ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfso GIF version

Theorem nfso 4349
Description: Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
nfpo.r 𝑥𝑅
nfpo.a 𝑥𝐴
Assertion
Ref Expression
nfso 𝑥 𝑅 Or 𝐴

Proof of Theorem nfso
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iso 4344 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))))
2 nfpo.r . . . 4 𝑥𝑅
3 nfpo.a . . . 4 𝑥𝐴
42, 3nfpo 4348 . . 3 𝑥 𝑅 Po 𝐴
5 nfcv 2348 . . . . . . . 8 𝑥𝑎
6 nfcv 2348 . . . . . . . 8 𝑥𝑏
75, 2, 6nfbr 4090 . . . . . . 7 𝑥 𝑎𝑅𝑏
8 nfcv 2348 . . . . . . . . 9 𝑥𝑐
95, 2, 8nfbr 4090 . . . . . . . 8 𝑥 𝑎𝑅𝑐
108, 2, 6nfbr 4090 . . . . . . . 8 𝑥 𝑐𝑅𝑏
119, 10nfor 1597 . . . . . . 7 𝑥(𝑎𝑅𝑐𝑐𝑅𝑏)
127, 11nfim 1595 . . . . . 6 𝑥(𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))
133, 12nfralxy 2544 . . . . 5 𝑥𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))
143, 13nfralxy 2544 . . . 4 𝑥𝑏𝐴𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))
153, 14nfralxy 2544 . . 3 𝑥𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))
164, 15nfan 1588 . 2 𝑥(𝑅 Po 𝐴 ∧ ∀𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏)))
171, 16nfxfr 1497 1 𝑥 𝑅 Or 𝐴
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710  wnf 1483  wnfc 2335  wral 2484   class class class wbr 4044   Po wpo 4341   Or wor 4342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-po 4343  df-iso 4344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator