ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfso GIF version

Theorem nfso 4333
Description: Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
nfpo.r 𝑥𝑅
nfpo.a 𝑥𝐴
Assertion
Ref Expression
nfso 𝑥 𝑅 Or 𝐴

Proof of Theorem nfso
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iso 4328 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))))
2 nfpo.r . . . 4 𝑥𝑅
3 nfpo.a . . . 4 𝑥𝐴
42, 3nfpo 4332 . . 3 𝑥 𝑅 Po 𝐴
5 nfcv 2336 . . . . . . . 8 𝑥𝑎
6 nfcv 2336 . . . . . . . 8 𝑥𝑏
75, 2, 6nfbr 4075 . . . . . . 7 𝑥 𝑎𝑅𝑏
8 nfcv 2336 . . . . . . . . 9 𝑥𝑐
95, 2, 8nfbr 4075 . . . . . . . 8 𝑥 𝑎𝑅𝑐
108, 2, 6nfbr 4075 . . . . . . . 8 𝑥 𝑐𝑅𝑏
119, 10nfor 1585 . . . . . . 7 𝑥(𝑎𝑅𝑐𝑐𝑅𝑏)
127, 11nfim 1583 . . . . . 6 𝑥(𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))
133, 12nfralxy 2532 . . . . 5 𝑥𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))
143, 13nfralxy 2532 . . . 4 𝑥𝑏𝐴𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))
153, 14nfralxy 2532 . . 3 𝑥𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))
164, 15nfan 1576 . 2 𝑥(𝑅 Po 𝐴 ∧ ∀𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏)))
171, 16nfxfr 1485 1 𝑥 𝑅 Or 𝐴
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  wnf 1471  wnfc 2323  wral 2472   class class class wbr 4029   Po wpo 4325   Or wor 4326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-po 4327  df-iso 4328
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator