| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfso | GIF version | ||
| Description: Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| Ref | Expression |
|---|---|
| nfpo.r | ⊢ Ⅎ𝑥𝑅 |
| nfpo.a | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfso | ⊢ Ⅎ𝑥 𝑅 Or 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iso 4344 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐 ∨ 𝑐𝑅𝑏)))) | |
| 2 | nfpo.r | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
| 3 | nfpo.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nfpo 4348 | . . 3 ⊢ Ⅎ𝑥 𝑅 Po 𝐴 |
| 5 | nfcv 2348 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑎 | |
| 6 | nfcv 2348 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑏 | |
| 7 | 5, 2, 6 | nfbr 4090 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑎𝑅𝑏 |
| 8 | nfcv 2348 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑐 | |
| 9 | 5, 2, 8 | nfbr 4090 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑎𝑅𝑐 |
| 10 | 8, 2, 6 | nfbr 4090 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑐𝑅𝑏 |
| 11 | 9, 10 | nfor 1597 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑎𝑅𝑐 ∨ 𝑐𝑅𝑏) |
| 12 | 7, 11 | nfim 1595 | . . . . . 6 ⊢ Ⅎ𝑥(𝑎𝑅𝑏 → (𝑎𝑅𝑐 ∨ 𝑐𝑅𝑏)) |
| 13 | 3, 12 | nfralxy 2544 | . . . . 5 ⊢ Ⅎ𝑥∀𝑐 ∈ 𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐 ∨ 𝑐𝑅𝑏)) |
| 14 | 3, 13 | nfralxy 2544 | . . . 4 ⊢ Ⅎ𝑥∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐 ∨ 𝑐𝑅𝑏)) |
| 15 | 3, 14 | nfralxy 2544 | . . 3 ⊢ Ⅎ𝑥∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐 ∨ 𝑐𝑅𝑏)) |
| 16 | 4, 15 | nfan 1588 | . 2 ⊢ Ⅎ𝑥(𝑅 Po 𝐴 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐 ∨ 𝑐𝑅𝑏))) |
| 17 | 1, 16 | nfxfr 1497 | 1 ⊢ Ⅎ𝑥 𝑅 Or 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 Ⅎwnf 1483 Ⅎwnfc 2335 ∀wral 2484 class class class wbr 4044 Po wpo 4341 Or wor 4342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-po 4343 df-iso 4344 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |