ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsn2 GIF version

Theorem fsn2 5736
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.)
Hypothesis
Ref Expression
fsn2.1 𝐴 ∈ V
Assertion
Ref Expression
fsn2 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))

Proof of Theorem fsn2
StepHypRef Expression
1 ffn 5407 . . 3 (𝐹:{𝐴}⟶𝐵𝐹 Fn {𝐴})
2 fsn2.1 . . . . 5 𝐴 ∈ V
32snid 3653 . . . 4 𝐴 ∈ {𝐴}
4 funfvex 5575 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ V)
54funfni 5358 . . . 4 ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝐹𝐴) ∈ V)
63, 5mpan2 425 . . 3 (𝐹 Fn {𝐴} → (𝐹𝐴) ∈ V)
71, 6syl 14 . 2 (𝐹:{𝐴}⟶𝐵 → (𝐹𝐴) ∈ V)
8 elex 2774 . . 3 ((𝐹𝐴) ∈ 𝐵 → (𝐹𝐴) ∈ V)
98adantr 276 . 2 (((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹𝐴) ∈ V)
10 ffvelcdm 5695 . . . . . 6 ((𝐹:{𝐴}⟶𝐵𝐴 ∈ {𝐴}) → (𝐹𝐴) ∈ 𝐵)
113, 10mpan2 425 . . . . 5 (𝐹:{𝐴}⟶𝐵 → (𝐹𝐴) ∈ 𝐵)
12 dffn3 5418 . . . . . . . 8 (𝐹 Fn {𝐴} ↔ 𝐹:{𝐴}⟶ran 𝐹)
1312biimpi 120 . . . . . . 7 (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶ran 𝐹)
14 imadmrn 5019 . . . . . . . . . 10 (𝐹 “ dom 𝐹) = ran 𝐹
15 fndm 5357 . . . . . . . . . . 11 (𝐹 Fn {𝐴} → dom 𝐹 = {𝐴})
1615imaeq2d 5009 . . . . . . . . . 10 (𝐹 Fn {𝐴} → (𝐹 “ dom 𝐹) = (𝐹 “ {𝐴}))
1714, 16eqtr3id 2243 . . . . . . . . 9 (𝐹 Fn {𝐴} → ran 𝐹 = (𝐹 “ {𝐴}))
18 fnsnfv 5620 . . . . . . . . . 10 ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
193, 18mpan2 425 . . . . . . . . 9 (𝐹 Fn {𝐴} → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
2017, 19eqtr4d 2232 . . . . . . . 8 (𝐹 Fn {𝐴} → ran 𝐹 = {(𝐹𝐴)})
21 feq3 5392 . . . . . . . 8 (ran 𝐹 = {(𝐹𝐴)} → (𝐹:{𝐴}⟶ran 𝐹𝐹:{𝐴}⟶{(𝐹𝐴)}))
2220, 21syl 14 . . . . . . 7 (𝐹 Fn {𝐴} → (𝐹:{𝐴}⟶ran 𝐹𝐹:{𝐴}⟶{(𝐹𝐴)}))
2313, 22mpbid 147 . . . . . 6 (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶{(𝐹𝐴)})
241, 23syl 14 . . . . 5 (𝐹:{𝐴}⟶𝐵𝐹:{𝐴}⟶{(𝐹𝐴)})
2511, 24jca 306 . . . 4 (𝐹:{𝐴}⟶𝐵 → ((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}))
26 snssi 3766 . . . . 5 ((𝐹𝐴) ∈ 𝐵 → {(𝐹𝐴)} ⊆ 𝐵)
27 fss 5419 . . . . . 6 ((𝐹:{𝐴}⟶{(𝐹𝐴)} ∧ {(𝐹𝐴)} ⊆ 𝐵) → 𝐹:{𝐴}⟶𝐵)
2827ancoms 268 . . . . 5 (({(𝐹𝐴)} ⊆ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) → 𝐹:{𝐴}⟶𝐵)
2926, 28sylan 283 . . . 4 (((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) → 𝐹:{𝐴}⟶𝐵)
3025, 29impbii 126 . . 3 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}))
31 fsng 5735 . . . . 5 ((𝐴 ∈ V ∧ (𝐹𝐴) ∈ V) → (𝐹:{𝐴}⟶{(𝐹𝐴)} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
322, 31mpan 424 . . . 4 ((𝐹𝐴) ∈ V → (𝐹:{𝐴}⟶{(𝐹𝐴)} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
3332anbi2d 464 . . 3 ((𝐹𝐴) ∈ V → (((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
3430, 33bitrid 192 . 2 ((𝐹𝐴) ∈ V → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
357, 9, 34pm5.21nii 705 1 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157  {csn 3622  cop 3625  dom cdm 4663  ran crn 4664  cima 4666   Fn wfn 5253  wf 5254  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266
This theorem is referenced by:  fnressn  5748  fressnfv  5749  mapsnconst  6753  elixpsn  6794  en1  6858
  Copyright terms: Public domain W3C validator