ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsn2 GIF version

Theorem fsn2 5667
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.)
Hypothesis
Ref Expression
fsn2.1 𝐴 ∈ V
Assertion
Ref Expression
fsn2 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))

Proof of Theorem fsn2
StepHypRef Expression
1 ffn 5345 . . 3 (𝐹:{𝐴}⟶𝐵𝐹 Fn {𝐴})
2 fsn2.1 . . . . 5 𝐴 ∈ V
32snid 3612 . . . 4 𝐴 ∈ {𝐴}
4 funfvex 5511 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ V)
54funfni 5296 . . . 4 ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝐹𝐴) ∈ V)
63, 5mpan2 423 . . 3 (𝐹 Fn {𝐴} → (𝐹𝐴) ∈ V)
71, 6syl 14 . 2 (𝐹:{𝐴}⟶𝐵 → (𝐹𝐴) ∈ V)
8 elex 2741 . . 3 ((𝐹𝐴) ∈ 𝐵 → (𝐹𝐴) ∈ V)
98adantr 274 . 2 (((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹𝐴) ∈ V)
10 ffvelrn 5626 . . . . . 6 ((𝐹:{𝐴}⟶𝐵𝐴 ∈ {𝐴}) → (𝐹𝐴) ∈ 𝐵)
113, 10mpan2 423 . . . . 5 (𝐹:{𝐴}⟶𝐵 → (𝐹𝐴) ∈ 𝐵)
12 dffn3 5356 . . . . . . . 8 (𝐹 Fn {𝐴} ↔ 𝐹:{𝐴}⟶ran 𝐹)
1312biimpi 119 . . . . . . 7 (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶ran 𝐹)
14 imadmrn 4961 . . . . . . . . . 10 (𝐹 “ dom 𝐹) = ran 𝐹
15 fndm 5295 . . . . . . . . . . 11 (𝐹 Fn {𝐴} → dom 𝐹 = {𝐴})
1615imaeq2d 4951 . . . . . . . . . 10 (𝐹 Fn {𝐴} → (𝐹 “ dom 𝐹) = (𝐹 “ {𝐴}))
1714, 16eqtr3id 2217 . . . . . . . . 9 (𝐹 Fn {𝐴} → ran 𝐹 = (𝐹 “ {𝐴}))
18 fnsnfv 5553 . . . . . . . . . 10 ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
193, 18mpan2 423 . . . . . . . . 9 (𝐹 Fn {𝐴} → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
2017, 19eqtr4d 2206 . . . . . . . 8 (𝐹 Fn {𝐴} → ran 𝐹 = {(𝐹𝐴)})
21 feq3 5330 . . . . . . . 8 (ran 𝐹 = {(𝐹𝐴)} → (𝐹:{𝐴}⟶ran 𝐹𝐹:{𝐴}⟶{(𝐹𝐴)}))
2220, 21syl 14 . . . . . . 7 (𝐹 Fn {𝐴} → (𝐹:{𝐴}⟶ran 𝐹𝐹:{𝐴}⟶{(𝐹𝐴)}))
2313, 22mpbid 146 . . . . . 6 (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶{(𝐹𝐴)})
241, 23syl 14 . . . . 5 (𝐹:{𝐴}⟶𝐵𝐹:{𝐴}⟶{(𝐹𝐴)})
2511, 24jca 304 . . . 4 (𝐹:{𝐴}⟶𝐵 → ((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}))
26 snssi 3722 . . . . 5 ((𝐹𝐴) ∈ 𝐵 → {(𝐹𝐴)} ⊆ 𝐵)
27 fss 5357 . . . . . 6 ((𝐹:{𝐴}⟶{(𝐹𝐴)} ∧ {(𝐹𝐴)} ⊆ 𝐵) → 𝐹:{𝐴}⟶𝐵)
2827ancoms 266 . . . . 5 (({(𝐹𝐴)} ⊆ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) → 𝐹:{𝐴}⟶𝐵)
2926, 28sylan 281 . . . 4 (((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) → 𝐹:{𝐴}⟶𝐵)
3025, 29impbii 125 . . 3 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}))
31 fsng 5666 . . . . 5 ((𝐴 ∈ V ∧ (𝐹𝐴) ∈ V) → (𝐹:{𝐴}⟶{(𝐹𝐴)} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
322, 31mpan 422 . . . 4 ((𝐹𝐴) ∈ V → (𝐹:{𝐴}⟶{(𝐹𝐴)} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
3332anbi2d 461 . . 3 ((𝐹𝐴) ∈ V → (((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
3430, 33syl5bb 191 . 2 ((𝐹𝐴) ∈ V → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
357, 9, 34pm5.21nii 699 1 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  wcel 2141  Vcvv 2730  wss 3121  {csn 3581  cop 3584  dom cdm 4609  ran crn 4610  cima 4612   Fn wfn 5191  wf 5192  cfv 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204
This theorem is referenced by:  fnressn  5679  fressnfv  5680  mapsnconst  6668  elixpsn  6709  en1  6773
  Copyright terms: Public domain W3C validator