ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsn2 GIF version

Theorem fsn2 5703
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.)
Hypothesis
Ref Expression
fsn2.1 𝐴 ∈ V
Assertion
Ref Expression
fsn2 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))

Proof of Theorem fsn2
StepHypRef Expression
1 ffn 5377 . . 3 (𝐹:{𝐴}⟶𝐵𝐹 Fn {𝐴})
2 fsn2.1 . . . . 5 𝐴 ∈ V
32snid 3635 . . . 4 𝐴 ∈ {𝐴}
4 funfvex 5544 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ V)
54funfni 5328 . . . 4 ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝐹𝐴) ∈ V)
63, 5mpan2 425 . . 3 (𝐹 Fn {𝐴} → (𝐹𝐴) ∈ V)
71, 6syl 14 . 2 (𝐹:{𝐴}⟶𝐵 → (𝐹𝐴) ∈ V)
8 elex 2760 . . 3 ((𝐹𝐴) ∈ 𝐵 → (𝐹𝐴) ∈ V)
98adantr 276 . 2 (((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹𝐴) ∈ V)
10 ffvelcdm 5662 . . . . . 6 ((𝐹:{𝐴}⟶𝐵𝐴 ∈ {𝐴}) → (𝐹𝐴) ∈ 𝐵)
113, 10mpan2 425 . . . . 5 (𝐹:{𝐴}⟶𝐵 → (𝐹𝐴) ∈ 𝐵)
12 dffn3 5388 . . . . . . . 8 (𝐹 Fn {𝐴} ↔ 𝐹:{𝐴}⟶ran 𝐹)
1312biimpi 120 . . . . . . 7 (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶ran 𝐹)
14 imadmrn 4992 . . . . . . . . . 10 (𝐹 “ dom 𝐹) = ran 𝐹
15 fndm 5327 . . . . . . . . . . 11 (𝐹 Fn {𝐴} → dom 𝐹 = {𝐴})
1615imaeq2d 4982 . . . . . . . . . 10 (𝐹 Fn {𝐴} → (𝐹 “ dom 𝐹) = (𝐹 “ {𝐴}))
1714, 16eqtr3id 2234 . . . . . . . . 9 (𝐹 Fn {𝐴} → ran 𝐹 = (𝐹 “ {𝐴}))
18 fnsnfv 5588 . . . . . . . . . 10 ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
193, 18mpan2 425 . . . . . . . . 9 (𝐹 Fn {𝐴} → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
2017, 19eqtr4d 2223 . . . . . . . 8 (𝐹 Fn {𝐴} → ran 𝐹 = {(𝐹𝐴)})
21 feq3 5362 . . . . . . . 8 (ran 𝐹 = {(𝐹𝐴)} → (𝐹:{𝐴}⟶ran 𝐹𝐹:{𝐴}⟶{(𝐹𝐴)}))
2220, 21syl 14 . . . . . . 7 (𝐹 Fn {𝐴} → (𝐹:{𝐴}⟶ran 𝐹𝐹:{𝐴}⟶{(𝐹𝐴)}))
2313, 22mpbid 147 . . . . . 6 (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶{(𝐹𝐴)})
241, 23syl 14 . . . . 5 (𝐹:{𝐴}⟶𝐵𝐹:{𝐴}⟶{(𝐹𝐴)})
2511, 24jca 306 . . . 4 (𝐹:{𝐴}⟶𝐵 → ((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}))
26 snssi 3748 . . . . 5 ((𝐹𝐴) ∈ 𝐵 → {(𝐹𝐴)} ⊆ 𝐵)
27 fss 5389 . . . . . 6 ((𝐹:{𝐴}⟶{(𝐹𝐴)} ∧ {(𝐹𝐴)} ⊆ 𝐵) → 𝐹:{𝐴}⟶𝐵)
2827ancoms 268 . . . . 5 (({(𝐹𝐴)} ⊆ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) → 𝐹:{𝐴}⟶𝐵)
2926, 28sylan 283 . . . 4 (((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) → 𝐹:{𝐴}⟶𝐵)
3025, 29impbii 126 . . 3 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}))
31 fsng 5702 . . . . 5 ((𝐴 ∈ V ∧ (𝐹𝐴) ∈ V) → (𝐹:{𝐴}⟶{(𝐹𝐴)} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
322, 31mpan 424 . . . 4 ((𝐹𝐴) ∈ V → (𝐹:{𝐴}⟶{(𝐹𝐴)} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
3332anbi2d 464 . . 3 ((𝐹𝐴) ∈ V → (((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
3430, 33bitrid 192 . 2 ((𝐹𝐴) ∈ V → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
357, 9, 34pm5.21nii 705 1 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1363  wcel 2158  Vcvv 2749  wss 3141  {csn 3604  cop 3607  dom cdm 4638  ran crn 4639  cima 4641   Fn wfn 5223  wf 5224  cfv 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-reu 2472  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236
This theorem is referenced by:  fnressn  5715  fressnfv  5716  mapsnconst  6708  elixpsn  6749  en1  6813
  Copyright terms: Public domain W3C validator