ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsn2 GIF version

Theorem fsn2 5691
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.)
Hypothesis
Ref Expression
fsn2.1 𝐴 ∈ V
Assertion
Ref Expression
fsn2 (𝐹:{𝐴}⟢𝐡 ↔ ((πΉβ€˜π΄) ∈ 𝐡 ∧ 𝐹 = {⟨𝐴, (πΉβ€˜π΄)⟩}))

Proof of Theorem fsn2
StepHypRef Expression
1 ffn 5366 . . 3 (𝐹:{𝐴}⟢𝐡 β†’ 𝐹 Fn {𝐴})
2 fsn2.1 . . . . 5 𝐴 ∈ V
32snid 3624 . . . 4 𝐴 ∈ {𝐴}
4 funfvex 5533 . . . . 5 ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) β†’ (πΉβ€˜π΄) ∈ V)
54funfni 5317 . . . 4 ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) β†’ (πΉβ€˜π΄) ∈ V)
63, 5mpan2 425 . . 3 (𝐹 Fn {𝐴} β†’ (πΉβ€˜π΄) ∈ V)
71, 6syl 14 . 2 (𝐹:{𝐴}⟢𝐡 β†’ (πΉβ€˜π΄) ∈ V)
8 elex 2749 . . 3 ((πΉβ€˜π΄) ∈ 𝐡 β†’ (πΉβ€˜π΄) ∈ V)
98adantr 276 . 2 (((πΉβ€˜π΄) ∈ 𝐡 ∧ 𝐹 = {⟨𝐴, (πΉβ€˜π΄)⟩}) β†’ (πΉβ€˜π΄) ∈ V)
10 ffvelcdm 5650 . . . . . 6 ((𝐹:{𝐴}⟢𝐡 ∧ 𝐴 ∈ {𝐴}) β†’ (πΉβ€˜π΄) ∈ 𝐡)
113, 10mpan2 425 . . . . 5 (𝐹:{𝐴}⟢𝐡 β†’ (πΉβ€˜π΄) ∈ 𝐡)
12 dffn3 5377 . . . . . . . 8 (𝐹 Fn {𝐴} ↔ 𝐹:{𝐴}⟢ran 𝐹)
1312biimpi 120 . . . . . . 7 (𝐹 Fn {𝐴} β†’ 𝐹:{𝐴}⟢ran 𝐹)
14 imadmrn 4981 . . . . . . . . . 10 (𝐹 β€œ dom 𝐹) = ran 𝐹
15 fndm 5316 . . . . . . . . . . 11 (𝐹 Fn {𝐴} β†’ dom 𝐹 = {𝐴})
1615imaeq2d 4971 . . . . . . . . . 10 (𝐹 Fn {𝐴} β†’ (𝐹 β€œ dom 𝐹) = (𝐹 β€œ {𝐴}))
1714, 16eqtr3id 2224 . . . . . . . . 9 (𝐹 Fn {𝐴} β†’ ran 𝐹 = (𝐹 β€œ {𝐴}))
18 fnsnfv 5576 . . . . . . . . . 10 ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) β†’ {(πΉβ€˜π΄)} = (𝐹 β€œ {𝐴}))
193, 18mpan2 425 . . . . . . . . 9 (𝐹 Fn {𝐴} β†’ {(πΉβ€˜π΄)} = (𝐹 β€œ {𝐴}))
2017, 19eqtr4d 2213 . . . . . . . 8 (𝐹 Fn {𝐴} β†’ ran 𝐹 = {(πΉβ€˜π΄)})
21 feq3 5351 . . . . . . . 8 (ran 𝐹 = {(πΉβ€˜π΄)} β†’ (𝐹:{𝐴}⟢ran 𝐹 ↔ 𝐹:{𝐴}⟢{(πΉβ€˜π΄)}))
2220, 21syl 14 . . . . . . 7 (𝐹 Fn {𝐴} β†’ (𝐹:{𝐴}⟢ran 𝐹 ↔ 𝐹:{𝐴}⟢{(πΉβ€˜π΄)}))
2313, 22mpbid 147 . . . . . 6 (𝐹 Fn {𝐴} β†’ 𝐹:{𝐴}⟢{(πΉβ€˜π΄)})
241, 23syl 14 . . . . 5 (𝐹:{𝐴}⟢𝐡 β†’ 𝐹:{𝐴}⟢{(πΉβ€˜π΄)})
2511, 24jca 306 . . . 4 (𝐹:{𝐴}⟢𝐡 β†’ ((πΉβ€˜π΄) ∈ 𝐡 ∧ 𝐹:{𝐴}⟢{(πΉβ€˜π΄)}))
26 snssi 3737 . . . . 5 ((πΉβ€˜π΄) ∈ 𝐡 β†’ {(πΉβ€˜π΄)} βŠ† 𝐡)
27 fss 5378 . . . . . 6 ((𝐹:{𝐴}⟢{(πΉβ€˜π΄)} ∧ {(πΉβ€˜π΄)} βŠ† 𝐡) β†’ 𝐹:{𝐴}⟢𝐡)
2827ancoms 268 . . . . 5 (({(πΉβ€˜π΄)} βŠ† 𝐡 ∧ 𝐹:{𝐴}⟢{(πΉβ€˜π΄)}) β†’ 𝐹:{𝐴}⟢𝐡)
2926, 28sylan 283 . . . 4 (((πΉβ€˜π΄) ∈ 𝐡 ∧ 𝐹:{𝐴}⟢{(πΉβ€˜π΄)}) β†’ 𝐹:{𝐴}⟢𝐡)
3025, 29impbii 126 . . 3 (𝐹:{𝐴}⟢𝐡 ↔ ((πΉβ€˜π΄) ∈ 𝐡 ∧ 𝐹:{𝐴}⟢{(πΉβ€˜π΄)}))
31 fsng 5690 . . . . 5 ((𝐴 ∈ V ∧ (πΉβ€˜π΄) ∈ V) β†’ (𝐹:{𝐴}⟢{(πΉβ€˜π΄)} ↔ 𝐹 = {⟨𝐴, (πΉβ€˜π΄)⟩}))
322, 31mpan 424 . . . 4 ((πΉβ€˜π΄) ∈ V β†’ (𝐹:{𝐴}⟢{(πΉβ€˜π΄)} ↔ 𝐹 = {⟨𝐴, (πΉβ€˜π΄)⟩}))
3332anbi2d 464 . . 3 ((πΉβ€˜π΄) ∈ V β†’ (((πΉβ€˜π΄) ∈ 𝐡 ∧ 𝐹:{𝐴}⟢{(πΉβ€˜π΄)}) ↔ ((πΉβ€˜π΄) ∈ 𝐡 ∧ 𝐹 = {⟨𝐴, (πΉβ€˜π΄)⟩})))
3430, 33bitrid 192 . 2 ((πΉβ€˜π΄) ∈ V β†’ (𝐹:{𝐴}⟢𝐡 ↔ ((πΉβ€˜π΄) ∈ 𝐡 ∧ 𝐹 = {⟨𝐴, (πΉβ€˜π΄)⟩})))
357, 9, 34pm5.21nii 704 1 (𝐹:{𝐴}⟢𝐡 ↔ ((πΉβ€˜π΄) ∈ 𝐡 ∧ 𝐹 = {⟨𝐴, (πΉβ€˜π΄)⟩}))
Colors of variables: wff set class
Syntax hints:   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148  Vcvv 2738   βŠ† wss 3130  {csn 3593  βŸ¨cop 3596  dom cdm 4627  ran crn 4628   β€œ cima 4630   Fn wfn 5212  βŸΆwf 5213  β€˜cfv 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225
This theorem is referenced by:  fnressn  5703  fressnfv  5704  mapsnconst  6694  elixpsn  6735  en1  6799
  Copyright terms: Public domain W3C validator