Step | Hyp | Ref
| Expression |
1 | | ffn 5366 |
. . 3
β’ (πΉ:{π΄}βΆπ΅ β πΉ Fn {π΄}) |
2 | | fsn2.1 |
. . . . 5
β’ π΄ β V |
3 | 2 | snid 3624 |
. . . 4
β’ π΄ β {π΄} |
4 | | funfvex 5533 |
. . . . 5
β’ ((Fun
πΉ β§ π΄ β dom πΉ) β (πΉβπ΄) β V) |
5 | 4 | funfni 5317 |
. . . 4
β’ ((πΉ Fn {π΄} β§ π΄ β {π΄}) β (πΉβπ΄) β V) |
6 | 3, 5 | mpan2 425 |
. . 3
β’ (πΉ Fn {π΄} β (πΉβπ΄) β V) |
7 | 1, 6 | syl 14 |
. 2
β’ (πΉ:{π΄}βΆπ΅ β (πΉβπ΄) β V) |
8 | | elex 2749 |
. . 3
β’ ((πΉβπ΄) β π΅ β (πΉβπ΄) β V) |
9 | 8 | adantr 276 |
. 2
β’ (((πΉβπ΄) β π΅ β§ πΉ = {β¨π΄, (πΉβπ΄)β©}) β (πΉβπ΄) β V) |
10 | | ffvelcdm 5650 |
. . . . . 6
β’ ((πΉ:{π΄}βΆπ΅ β§ π΄ β {π΄}) β (πΉβπ΄) β π΅) |
11 | 3, 10 | mpan2 425 |
. . . . 5
β’ (πΉ:{π΄}βΆπ΅ β (πΉβπ΄) β π΅) |
12 | | dffn3 5377 |
. . . . . . . 8
β’ (πΉ Fn {π΄} β πΉ:{π΄}βΆran πΉ) |
13 | 12 | biimpi 120 |
. . . . . . 7
β’ (πΉ Fn {π΄} β πΉ:{π΄}βΆran πΉ) |
14 | | imadmrn 4981 |
. . . . . . . . . 10
β’ (πΉ β dom πΉ) = ran πΉ |
15 | | fndm 5316 |
. . . . . . . . . . 11
β’ (πΉ Fn {π΄} β dom πΉ = {π΄}) |
16 | 15 | imaeq2d 4971 |
. . . . . . . . . 10
β’ (πΉ Fn {π΄} β (πΉ β dom πΉ) = (πΉ β {π΄})) |
17 | 14, 16 | eqtr3id 2224 |
. . . . . . . . 9
β’ (πΉ Fn {π΄} β ran πΉ = (πΉ β {π΄})) |
18 | | fnsnfv 5576 |
. . . . . . . . . 10
β’ ((πΉ Fn {π΄} β§ π΄ β {π΄}) β {(πΉβπ΄)} = (πΉ β {π΄})) |
19 | 3, 18 | mpan2 425 |
. . . . . . . . 9
β’ (πΉ Fn {π΄} β {(πΉβπ΄)} = (πΉ β {π΄})) |
20 | 17, 19 | eqtr4d 2213 |
. . . . . . . 8
β’ (πΉ Fn {π΄} β ran πΉ = {(πΉβπ΄)}) |
21 | | feq3 5351 |
. . . . . . . 8
β’ (ran
πΉ = {(πΉβπ΄)} β (πΉ:{π΄}βΆran πΉ β πΉ:{π΄}βΆ{(πΉβπ΄)})) |
22 | 20, 21 | syl 14 |
. . . . . . 7
β’ (πΉ Fn {π΄} β (πΉ:{π΄}βΆran πΉ β πΉ:{π΄}βΆ{(πΉβπ΄)})) |
23 | 13, 22 | mpbid 147 |
. . . . . 6
β’ (πΉ Fn {π΄} β πΉ:{π΄}βΆ{(πΉβπ΄)}) |
24 | 1, 23 | syl 14 |
. . . . 5
β’ (πΉ:{π΄}βΆπ΅ β πΉ:{π΄}βΆ{(πΉβπ΄)}) |
25 | 11, 24 | jca 306 |
. . . 4
β’ (πΉ:{π΄}βΆπ΅ β ((πΉβπ΄) β π΅ β§ πΉ:{π΄}βΆ{(πΉβπ΄)})) |
26 | | snssi 3737 |
. . . . 5
β’ ((πΉβπ΄) β π΅ β {(πΉβπ΄)} β π΅) |
27 | | fss 5378 |
. . . . . 6
β’ ((πΉ:{π΄}βΆ{(πΉβπ΄)} β§ {(πΉβπ΄)} β π΅) β πΉ:{π΄}βΆπ΅) |
28 | 27 | ancoms 268 |
. . . . 5
β’ (({(πΉβπ΄)} β π΅ β§ πΉ:{π΄}βΆ{(πΉβπ΄)}) β πΉ:{π΄}βΆπ΅) |
29 | 26, 28 | sylan 283 |
. . . 4
β’ (((πΉβπ΄) β π΅ β§ πΉ:{π΄}βΆ{(πΉβπ΄)}) β πΉ:{π΄}βΆπ΅) |
30 | 25, 29 | impbii 126 |
. . 3
β’ (πΉ:{π΄}βΆπ΅ β ((πΉβπ΄) β π΅ β§ πΉ:{π΄}βΆ{(πΉβπ΄)})) |
31 | | fsng 5690 |
. . . . 5
β’ ((π΄ β V β§ (πΉβπ΄) β V) β (πΉ:{π΄}βΆ{(πΉβπ΄)} β πΉ = {β¨π΄, (πΉβπ΄)β©})) |
32 | 2, 31 | mpan 424 |
. . . 4
β’ ((πΉβπ΄) β V β (πΉ:{π΄}βΆ{(πΉβπ΄)} β πΉ = {β¨π΄, (πΉβπ΄)β©})) |
33 | 32 | anbi2d 464 |
. . 3
β’ ((πΉβπ΄) β V β (((πΉβπ΄) β π΅ β§ πΉ:{π΄}βΆ{(πΉβπ΄)}) β ((πΉβπ΄) β π΅ β§ πΉ = {β¨π΄, (πΉβπ΄)β©}))) |
34 | 30, 33 | bitrid 192 |
. 2
β’ ((πΉβπ΄) β V β (πΉ:{π΄}βΆπ΅ β ((πΉβπ΄) β π΅ β§ πΉ = {β¨π΄, (πΉβπ΄)β©}))) |
35 | 7, 9, 34 | pm5.21nii 704 |
1
β’ (πΉ:{π΄}βΆπ΅ β ((πΉβπ΄) β π΅ β§ πΉ = {β¨π΄, (πΉβπ΄)β©})) |