Proof of Theorem fsn2
Step | Hyp | Ref
| Expression |
1 | | ffn 5345 |
. . 3
⊢ (𝐹:{𝐴}⟶𝐵 → 𝐹 Fn {𝐴}) |
2 | | fsn2.1 |
. . . . 5
⊢ 𝐴 ∈ V |
3 | 2 | snid 3612 |
. . . 4
⊢ 𝐴 ∈ {𝐴} |
4 | | funfvex 5511 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ V) |
5 | 4 | funfni 5296 |
. . . 4
⊢ ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝐹‘𝐴) ∈ V) |
6 | 3, 5 | mpan2 423 |
. . 3
⊢ (𝐹 Fn {𝐴} → (𝐹‘𝐴) ∈ V) |
7 | 1, 6 | syl 14 |
. 2
⊢ (𝐹:{𝐴}⟶𝐵 → (𝐹‘𝐴) ∈ V) |
8 | | elex 2741 |
. . 3
⊢ ((𝐹‘𝐴) ∈ 𝐵 → (𝐹‘𝐴) ∈ V) |
9 | 8 | adantr 274 |
. 2
⊢ (((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → (𝐹‘𝐴) ∈ V) |
10 | | ffvelrn 5626 |
. . . . . 6
⊢ ((𝐹:{𝐴}⟶𝐵 ∧ 𝐴 ∈ {𝐴}) → (𝐹‘𝐴) ∈ 𝐵) |
11 | 3, 10 | mpan2 423 |
. . . . 5
⊢ (𝐹:{𝐴}⟶𝐵 → (𝐹‘𝐴) ∈ 𝐵) |
12 | | dffn3 5356 |
. . . . . . . 8
⊢ (𝐹 Fn {𝐴} ↔ 𝐹:{𝐴}⟶ran 𝐹) |
13 | 12 | biimpi 119 |
. . . . . . 7
⊢ (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶ran 𝐹) |
14 | | imadmrn 4961 |
. . . . . . . . . 10
⊢ (𝐹 “ dom 𝐹) = ran 𝐹 |
15 | | fndm 5295 |
. . . . . . . . . . 11
⊢ (𝐹 Fn {𝐴} → dom 𝐹 = {𝐴}) |
16 | 15 | imaeq2d 4951 |
. . . . . . . . . 10
⊢ (𝐹 Fn {𝐴} → (𝐹 “ dom 𝐹) = (𝐹 “ {𝐴})) |
17 | 14, 16 | eqtr3id 2217 |
. . . . . . . . 9
⊢ (𝐹 Fn {𝐴} → ran 𝐹 = (𝐹 “ {𝐴})) |
18 | | fnsnfv 5553 |
. . . . . . . . . 10
⊢ ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
19 | 3, 18 | mpan2 423 |
. . . . . . . . 9
⊢ (𝐹 Fn {𝐴} → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
20 | 17, 19 | eqtr4d 2206 |
. . . . . . . 8
⊢ (𝐹 Fn {𝐴} → ran 𝐹 = {(𝐹‘𝐴)}) |
21 | | feq3 5330 |
. . . . . . . 8
⊢ (ran
𝐹 = {(𝐹‘𝐴)} → (𝐹:{𝐴}⟶ran 𝐹 ↔ 𝐹:{𝐴}⟶{(𝐹‘𝐴)})) |
22 | 20, 21 | syl 14 |
. . . . . . 7
⊢ (𝐹 Fn {𝐴} → (𝐹:{𝐴}⟶ran 𝐹 ↔ 𝐹:{𝐴}⟶{(𝐹‘𝐴)})) |
23 | 13, 22 | mpbid 146 |
. . . . . 6
⊢ (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶{(𝐹‘𝐴)}) |
24 | 1, 23 | syl 14 |
. . . . 5
⊢ (𝐹:{𝐴}⟶𝐵 → 𝐹:{𝐴}⟶{(𝐹‘𝐴)}) |
25 | 11, 24 | jca 304 |
. . . 4
⊢ (𝐹:{𝐴}⟶𝐵 → ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹:{𝐴}⟶{(𝐹‘𝐴)})) |
26 | | snssi 3722 |
. . . . 5
⊢ ((𝐹‘𝐴) ∈ 𝐵 → {(𝐹‘𝐴)} ⊆ 𝐵) |
27 | | fss 5357 |
. . . . . 6
⊢ ((𝐹:{𝐴}⟶{(𝐹‘𝐴)} ∧ {(𝐹‘𝐴)} ⊆ 𝐵) → 𝐹:{𝐴}⟶𝐵) |
28 | 27 | ancoms 266 |
. . . . 5
⊢ (({(𝐹‘𝐴)} ⊆ 𝐵 ∧ 𝐹:{𝐴}⟶{(𝐹‘𝐴)}) → 𝐹:{𝐴}⟶𝐵) |
29 | 26, 28 | sylan 281 |
. . . 4
⊢ (((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹:{𝐴}⟶{(𝐹‘𝐴)}) → 𝐹:{𝐴}⟶𝐵) |
30 | 25, 29 | impbii 125 |
. . 3
⊢ (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹:{𝐴}⟶{(𝐹‘𝐴)})) |
31 | | fsng 5666 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ (𝐹‘𝐴) ∈ V) → (𝐹:{𝐴}⟶{(𝐹‘𝐴)} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
32 | 2, 31 | mpan 422 |
. . . 4
⊢ ((𝐹‘𝐴) ∈ V → (𝐹:{𝐴}⟶{(𝐹‘𝐴)} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
33 | 32 | anbi2d 461 |
. . 3
⊢ ((𝐹‘𝐴) ∈ V → (((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹:{𝐴}⟶{(𝐹‘𝐴)}) ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}))) |
34 | 30, 33 | syl5bb 191 |
. 2
⊢ ((𝐹‘𝐴) ∈ V → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}))) |
35 | 7, 9, 34 | pm5.21nii 699 |
1
⊢ (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |