Step | Hyp | Ref
| Expression |
1 | | ffn 5345 |
. . . 4
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
2 | | dffn3 5356 |
. . . 4
⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
3 | 1, 2 | sylib 121 |
. . 3
⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴⟶ran 𝐹) |
4 | | f2ndf 6202 |
. . 3
⊢ (𝐹:𝐴⟶ran 𝐹 → (2nd ↾ 𝐹):𝐹⟶ran 𝐹) |
5 | 3, 4 | syl 14 |
. 2
⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹⟶ran 𝐹) |
6 | 2, 4 | sylbi 120 |
. . . . 5
⊢ (𝐹 Fn 𝐴 → (2nd ↾ 𝐹):𝐹⟶ran 𝐹) |
7 | 1, 6 | syl 14 |
. . . 4
⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹⟶ran 𝐹) |
8 | | frn 5354 |
. . . 4
⊢
((2nd ↾ 𝐹):𝐹⟶ran 𝐹 → ran (2nd ↾ 𝐹) ⊆ ran 𝐹) |
9 | 7, 8 | syl 14 |
. . 3
⊢ (𝐹:𝐴⟶𝐵 → ran (2nd ↾ 𝐹) ⊆ ran 𝐹) |
10 | | elrn2g 4799 |
. . . . . 6
⊢ (𝑦 ∈ ran 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐹)) |
11 | 10 | ibi 175 |
. . . . 5
⊢ (𝑦 ∈ ran 𝐹 → ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐹) |
12 | | fvres 5518 |
. . . . . . . . . 10
⊢
(〈𝑥, 𝑦〉 ∈ 𝐹 → ((2nd ↾ 𝐹)‘〈𝑥, 𝑦〉) = (2nd ‘〈𝑥, 𝑦〉)) |
13 | 12 | adantl 275 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹) → ((2nd ↾ 𝐹)‘〈𝑥, 𝑦〉) = (2nd ‘〈𝑥, 𝑦〉)) |
14 | | vex 2733 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
15 | | vex 2733 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
16 | 14, 15 | op2nd 6123 |
. . . . . . . . 9
⊢
(2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
17 | 13, 16 | eqtr2di 2220 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹) → 𝑦 = ((2nd ↾ 𝐹)‘〈𝑥, 𝑦〉)) |
18 | | f2ndf 6202 |
. . . . . . . . . 10
⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹⟶𝐵) |
19 | | ffn 5345 |
. . . . . . . . . 10
⊢
((2nd ↾ 𝐹):𝐹⟶𝐵 → (2nd ↾ 𝐹) Fn 𝐹) |
20 | 18, 19 | syl 14 |
. . . . . . . . 9
⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹) Fn 𝐹) |
21 | | fnfvelrn 5625 |
. . . . . . . . 9
⊢
(((2nd ↾ 𝐹) Fn 𝐹 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹) → ((2nd ↾ 𝐹)‘〈𝑥, 𝑦〉) ∈ ran (2nd ↾
𝐹)) |
22 | 20, 21 | sylan 281 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹) → ((2nd ↾ 𝐹)‘〈𝑥, 𝑦〉) ∈ ran (2nd ↾
𝐹)) |
23 | 17, 22 | eqeltrd 2247 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹) → 𝑦 ∈ ran (2nd ↾ 𝐹)) |
24 | 23 | ex 114 |
. . . . . 6
⊢ (𝐹:𝐴⟶𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐹 → 𝑦 ∈ ran (2nd ↾ 𝐹))) |
25 | 24 | exlimdv 1812 |
. . . . 5
⊢ (𝐹:𝐴⟶𝐵 → (∃𝑥〈𝑥, 𝑦〉 ∈ 𝐹 → 𝑦 ∈ ran (2nd ↾ 𝐹))) |
26 | 11, 25 | syl5 32 |
. . . 4
⊢ (𝐹:𝐴⟶𝐵 → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ ran (2nd ↾ 𝐹))) |
27 | 26 | ssrdv 3153 |
. . 3
⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ ran (2nd ↾ 𝐹)) |
28 | 9, 27 | eqssd 3164 |
. 2
⊢ (𝐹:𝐴⟶𝐵 → ran (2nd ↾ 𝐹) = ran 𝐹) |
29 | | dffo2 5422 |
. 2
⊢
((2nd ↾ 𝐹):𝐹–onto→ran 𝐹 ↔ ((2nd ↾ 𝐹):𝐹⟶ran 𝐹 ∧ ran (2nd ↾ 𝐹) = ran 𝐹)) |
30 | 5, 28, 29 | sylanbrc 415 |
1
⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹–onto→ran 𝐹) |