ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2ndf GIF version

Theorem fo2ndf 6223
Description: The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 onto the range of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
Assertion
Ref Expression
fo2ndf (𝐹:𝐴𝐵 → (2nd𝐹):𝐹onto→ran 𝐹)

Proof of Theorem fo2ndf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 5362 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 dffn3 5373 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
31, 2sylib 122 . . 3 (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹)
4 f2ndf 6222 . . 3 (𝐹:𝐴⟶ran 𝐹 → (2nd𝐹):𝐹⟶ran 𝐹)
53, 4syl 14 . 2 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹⟶ran 𝐹)
62, 4sylbi 121 . . . . 5 (𝐹 Fn 𝐴 → (2nd𝐹):𝐹⟶ran 𝐹)
71, 6syl 14 . . . 4 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹⟶ran 𝐹)
8 frn 5371 . . . 4 ((2nd𝐹):𝐹⟶ran 𝐹 → ran (2nd𝐹) ⊆ ran 𝐹)
97, 8syl 14 . . 3 (𝐹:𝐴𝐵 → ran (2nd𝐹) ⊆ ran 𝐹)
10 elrn2g 4814 . . . . . 6 (𝑦 ∈ ran 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐹))
1110ibi 176 . . . . 5 (𝑦 ∈ ran 𝐹 → ∃𝑥𝑥, 𝑦⟩ ∈ 𝐹)
12 fvres 5536 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ((2nd𝐹)‘⟨𝑥, 𝑦⟩) = (2nd ‘⟨𝑥, 𝑦⟩))
1312adantl 277 . . . . . . . . 9 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → ((2nd𝐹)‘⟨𝑥, 𝑦⟩) = (2nd ‘⟨𝑥, 𝑦⟩))
14 vex 2740 . . . . . . . . . 10 𝑥 ∈ V
15 vex 2740 . . . . . . . . . 10 𝑦 ∈ V
1614, 15op2nd 6143 . . . . . . . . 9 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
1713, 16eqtr2di 2227 . . . . . . . 8 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑦 = ((2nd𝐹)‘⟨𝑥, 𝑦⟩))
18 f2ndf 6222 . . . . . . . . . 10 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹𝐵)
19 ffn 5362 . . . . . . . . . 10 ((2nd𝐹):𝐹𝐵 → (2nd𝐹) Fn 𝐹)
2018, 19syl 14 . . . . . . . . 9 (𝐹:𝐴𝐵 → (2nd𝐹) Fn 𝐹)
21 fnfvelrn 5645 . . . . . . . . 9 (((2nd𝐹) Fn 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → ((2nd𝐹)‘⟨𝑥, 𝑦⟩) ∈ ran (2nd𝐹))
2220, 21sylan 283 . . . . . . . 8 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → ((2nd𝐹)‘⟨𝑥, 𝑦⟩) ∈ ran (2nd𝐹))
2317, 22eqeltrd 2254 . . . . . . 7 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑦 ∈ ran (2nd𝐹))
2423ex 115 . . . . . 6 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦 ∈ ran (2nd𝐹)))
2524exlimdv 1819 . . . . 5 (𝐹:𝐴𝐵 → (∃𝑥𝑥, 𝑦⟩ ∈ 𝐹𝑦 ∈ ran (2nd𝐹)))
2611, 25syl5 32 . . . 4 (𝐹:𝐴𝐵 → (𝑦 ∈ ran 𝐹𝑦 ∈ ran (2nd𝐹)))
2726ssrdv 3161 . . 3 (𝐹:𝐴𝐵 → ran 𝐹 ⊆ ran (2nd𝐹))
289, 27eqssd 3172 . 2 (𝐹:𝐴𝐵 → ran (2nd𝐹) = ran 𝐹)
29 dffo2 5439 . 2 ((2nd𝐹):𝐹onto→ran 𝐹 ↔ ((2nd𝐹):𝐹⟶ran 𝐹 ∧ ran (2nd𝐹) = ran 𝐹))
305, 28, 29sylanbrc 417 1 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹onto→ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wex 1492  wcel 2148  wss 3129  cop 3595  ran crn 4625  cres 4626   Fn wfn 5208  wf 5209  ontowfo 5211  cfv 5213  2nd c2nd 6135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4119  ax-pow 4172  ax-pr 4207  ax-un 4431
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3809  df-iun 3887  df-br 4002  df-opab 4063  df-mpt 4064  df-id 4291  df-xp 4630  df-rel 4631  df-cnv 4632  df-co 4633  df-dm 4634  df-rn 4635  df-res 4636  df-ima 4637  df-iota 5175  df-fun 5215  df-fn 5216  df-f 5217  df-fo 5219  df-fv 5221  df-2nd 6137
This theorem is referenced by:  f1o2ndf1  6224
  Copyright terms: Public domain W3C validator