ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2ndf GIF version

Theorem fo2ndf 6282
Description: The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 onto the range of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
Assertion
Ref Expression
fo2ndf (𝐹:𝐴𝐵 → (2nd𝐹):𝐹onto→ran 𝐹)

Proof of Theorem fo2ndf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 5404 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 dffn3 5415 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
31, 2sylib 122 . . 3 (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹)
4 f2ndf 6281 . . 3 (𝐹:𝐴⟶ran 𝐹 → (2nd𝐹):𝐹⟶ran 𝐹)
53, 4syl 14 . 2 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹⟶ran 𝐹)
62, 4sylbi 121 . . . . 5 (𝐹 Fn 𝐴 → (2nd𝐹):𝐹⟶ran 𝐹)
71, 6syl 14 . . . 4 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹⟶ran 𝐹)
8 frn 5413 . . . 4 ((2nd𝐹):𝐹⟶ran 𝐹 → ran (2nd𝐹) ⊆ ran 𝐹)
97, 8syl 14 . . 3 (𝐹:𝐴𝐵 → ran (2nd𝐹) ⊆ ran 𝐹)
10 elrn2g 4853 . . . . . 6 (𝑦 ∈ ran 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐹))
1110ibi 176 . . . . 5 (𝑦 ∈ ran 𝐹 → ∃𝑥𝑥, 𝑦⟩ ∈ 𝐹)
12 fvres 5579 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ((2nd𝐹)‘⟨𝑥, 𝑦⟩) = (2nd ‘⟨𝑥, 𝑦⟩))
1312adantl 277 . . . . . . . . 9 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → ((2nd𝐹)‘⟨𝑥, 𝑦⟩) = (2nd ‘⟨𝑥, 𝑦⟩))
14 vex 2763 . . . . . . . . . 10 𝑥 ∈ V
15 vex 2763 . . . . . . . . . 10 𝑦 ∈ V
1614, 15op2nd 6202 . . . . . . . . 9 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
1713, 16eqtr2di 2243 . . . . . . . 8 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑦 = ((2nd𝐹)‘⟨𝑥, 𝑦⟩))
18 f2ndf 6281 . . . . . . . . . 10 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹𝐵)
19 ffn 5404 . . . . . . . . . 10 ((2nd𝐹):𝐹𝐵 → (2nd𝐹) Fn 𝐹)
2018, 19syl 14 . . . . . . . . 9 (𝐹:𝐴𝐵 → (2nd𝐹) Fn 𝐹)
21 fnfvelrn 5691 . . . . . . . . 9 (((2nd𝐹) Fn 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → ((2nd𝐹)‘⟨𝑥, 𝑦⟩) ∈ ran (2nd𝐹))
2220, 21sylan 283 . . . . . . . 8 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → ((2nd𝐹)‘⟨𝑥, 𝑦⟩) ∈ ran (2nd𝐹))
2317, 22eqeltrd 2270 . . . . . . 7 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑦 ∈ ran (2nd𝐹))
2423ex 115 . . . . . 6 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦 ∈ ran (2nd𝐹)))
2524exlimdv 1830 . . . . 5 (𝐹:𝐴𝐵 → (∃𝑥𝑥, 𝑦⟩ ∈ 𝐹𝑦 ∈ ran (2nd𝐹)))
2611, 25syl5 32 . . . 4 (𝐹:𝐴𝐵 → (𝑦 ∈ ran 𝐹𝑦 ∈ ran (2nd𝐹)))
2726ssrdv 3186 . . 3 (𝐹:𝐴𝐵 → ran 𝐹 ⊆ ran (2nd𝐹))
289, 27eqssd 3197 . 2 (𝐹:𝐴𝐵 → ran (2nd𝐹) = ran 𝐹)
29 dffo2 5481 . 2 ((2nd𝐹):𝐹onto→ran 𝐹 ↔ ((2nd𝐹):𝐹⟶ran 𝐹 ∧ ran (2nd𝐹) = ran 𝐹))
305, 28, 29sylanbrc 417 1 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹onto→ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1503  wcel 2164  wss 3154  cop 3622  ran crn 4661  cres 4662   Fn wfn 5250  wf 5251  ontowfo 5253  cfv 5255  2nd c2nd 6194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-2nd 6196
This theorem is referenced by:  f1o2ndf1  6283
  Copyright terms: Public domain W3C validator