Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssid | GIF version |
Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
ssid | ⊢ 𝐴 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) | |
2 | 1 | ssriv 3146 | 1 ⊢ 𝐴 ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: ssidd 3163 eqimssi 3198 eqimss2i 3199 inv1 3445 difid 3477 undifabs 3485 pwidg 3573 elssuni 3817 unimax 3823 intmin 3844 rintm 3958 iunpw 4458 sucprcreg 4526 tfisi 4564 peano5 4575 xpss1 4714 xpss2 4715 residm 4916 resdm 4923 resmpt3 4933 ssrnres 5046 cocnvss 5129 dffn3 5348 fimacnv 5614 foima2 5720 tfrlem1 6276 rdgss 6351 fpmg 6640 findcard2d 6857 findcard2sd 6858 f1finf1o 6912 fidcenumlemr 6920 casef 7053 nnnninf 7090 1idprl 7531 1idpru 7532 ltexprlemm 7541 suplocexprlemmu 7659 elq 9560 expcl 10473 serclim0 11246 fsum2d 11376 fsumabs 11406 fsumiun 11418 fprod2d 11564 reef11 11640 ressid 12456 topopn 12646 fiinbas 12687 topbas 12707 topcld 12749 ntrtop 12768 opnneissb 12795 opnssneib 12796 opnneiid 12804 idcn 12852 cnconst2 12873 lmres 12888 retopbas 13163 cnopncntop 13177 abscncf 13212 recncf 13213 imcncf 13214 cjcncf 13215 mulc1cncf 13216 cncfcn1cntop 13221 cncfmpt2fcntop 13225 addccncf 13226 cdivcncfap 13227 negfcncf 13229 expcncf 13232 cnrehmeocntop 13233 cnlimcim 13280 cnlimc 13281 cnlimci 13282 dvcnp2cntop 13303 dvcn 13304 dvef 13328 efcn 13329 |
Copyright terms: Public domain | W3C validator |