| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssid | GIF version | ||
| Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssid | ⊢ 𝐴 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) | |
| 2 | 1 | ssriv 3228 | 1 ⊢ 𝐴 ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ssidd 3245 eqimssi 3280 eqimss2i 3281 inv1 3528 difid 3560 undifabs 3568 pwidg 3663 elssuni 3916 unimax 3922 intmin 3943 rintm 4058 iunpw 4571 sucprcreg 4641 tfisi 4679 peano5 4690 xpss1 4829 xpss2 4830 residm 5037 resdm 5044 resmpt3 5054 ssrnres 5171 cocnvss 5254 dffn3 5484 fimacnv 5766 foima2 5881 tfrlem1 6460 rdgss 6535 fpmg 6829 findcard2d 7061 findcard2sd 7062 f1finf1o 7122 fidcenumlemr 7130 casef 7263 nnnninf 7301 1idprl 7785 1idpru 7786 ltexprlemm 7795 suplocexprlemmu 7913 elq 9825 expcl 10787 serclim0 11824 fsum2d 11954 fsumabs 11984 fsumiun 11996 fprod2d 12142 reef11 12218 ghmghmrn 13808 subrgid 14195 znf1o 14623 topopn 14690 fiinbas 14731 topbas 14749 topcld 14791 ntrtop 14810 opnneissb 14837 opnssneib 14838 opnneiid 14846 idcn 14894 cnconst2 14915 lmres 14930 retopbas 15205 cnopncntop 15226 cnopn 15227 abscncf 15267 recncf 15268 imcncf 15269 cjcncf 15270 mulc1cncf 15271 cncfcn1cntop 15276 cncfmpt2fcntop 15281 addccncf 15282 idcncf 15283 sub1cncf 15284 sub2cncf 15285 cdivcncfap 15286 negfcncf 15288 expcncf 15291 cnrehmeocntop 15292 maxcncf 15297 mincncf 15298 ivthreinc 15327 hovercncf 15328 cnlimcim 15353 cnlimc 15354 cnlimci 15355 dvcnp2cntop 15381 dvcn 15382 dvmptfsum 15407 dvef 15409 plyssc 15421 efcn 15450 domomsubct 16396 |
| Copyright terms: Public domain | W3C validator |