![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssid | GIF version |
Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
ssid | ⊢ 𝐴 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) | |
2 | 1 | ssriv 3171 | 1 ⊢ 𝐴 ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2158 ⊆ wss 3141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-11 1516 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-in 3147 df-ss 3154 |
This theorem is referenced by: ssidd 3188 eqimssi 3223 eqimss2i 3224 inv1 3471 difid 3503 undifabs 3511 pwidg 3601 elssuni 3849 unimax 3855 intmin 3876 rintm 3991 iunpw 4492 sucprcreg 4560 tfisi 4598 peano5 4609 xpss1 4748 xpss2 4749 residm 4951 resdm 4958 resmpt3 4968 ssrnres 5083 cocnvss 5166 dffn3 5388 fimacnv 5658 foima2 5765 tfrlem1 6323 rdgss 6398 fpmg 6688 findcard2d 6905 findcard2sd 6906 f1finf1o 6960 fidcenumlemr 6968 casef 7101 nnnninf 7138 1idprl 7603 1idpru 7604 ltexprlemm 7613 suplocexprlemmu 7731 elq 9636 expcl 10552 serclim0 11327 fsum2d 11457 fsumabs 11487 fsumiun 11499 fprod2d 11645 reef11 11721 ghmghmrn 13157 subrgid 13500 topopn 13861 fiinbas 13902 topbas 13920 topcld 13962 ntrtop 13981 opnneissb 14008 opnssneib 14009 opnneiid 14017 idcn 14065 cnconst2 14086 lmres 14101 retopbas 14376 cnopncntop 14390 abscncf 14425 recncf 14426 imcncf 14427 cjcncf 14428 mulc1cncf 14429 cncfcn1cntop 14434 cncfmpt2fcntop 14438 addccncf 14439 cdivcncfap 14440 negfcncf 14442 expcncf 14445 cnrehmeocntop 14446 cnlimcim 14493 cnlimc 14494 cnlimci 14495 dvcnp2cntop 14516 dvcn 14517 dvef 14541 efcn 14542 |
Copyright terms: Public domain | W3C validator |