| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssid | GIF version | ||
| Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssid | ⊢ 𝐴 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) | |
| 2 | 1 | ssriv 3188 | 1 ⊢ 𝐴 ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ssidd 3205 eqimssi 3240 eqimss2i 3241 inv1 3488 difid 3520 undifabs 3528 pwidg 3620 elssuni 3868 unimax 3874 intmin 3895 rintm 4010 iunpw 4516 sucprcreg 4586 tfisi 4624 peano5 4635 xpss1 4774 xpss2 4775 residm 4979 resdm 4986 resmpt3 4996 ssrnres 5113 cocnvss 5196 dffn3 5421 fimacnv 5694 foima2 5801 tfrlem1 6375 rdgss 6450 fpmg 6742 findcard2d 6961 findcard2sd 6962 f1finf1o 7022 fidcenumlemr 7030 casef 7163 nnnninf 7201 1idprl 7676 1idpru 7677 ltexprlemm 7686 suplocexprlemmu 7804 elq 9715 expcl 10668 serclim0 11489 fsum2d 11619 fsumabs 11649 fsumiun 11661 fprod2d 11807 reef11 11883 ghmghmrn 13471 subrgid 13857 znf1o 14285 topopn 14352 fiinbas 14393 topbas 14411 topcld 14453 ntrtop 14472 opnneissb 14499 opnssneib 14500 opnneiid 14508 idcn 14556 cnconst2 14577 lmres 14592 retopbas 14867 cnopncntop 14888 cnopn 14889 abscncf 14929 recncf 14930 imcncf 14931 cjcncf 14932 mulc1cncf 14933 cncfcn1cntop 14938 cncfmpt2fcntop 14943 addccncf 14944 idcncf 14945 sub1cncf 14946 sub2cncf 14947 cdivcncfap 14948 negfcncf 14950 expcncf 14953 cnrehmeocntop 14954 maxcncf 14959 mincncf 14960 ivthreinc 14989 hovercncf 14990 cnlimcim 15015 cnlimc 15016 cnlimci 15017 dvcnp2cntop 15043 dvcn 15044 dvmptfsum 15069 dvef 15071 plyssc 15083 efcn 15112 domomsubct 15756 |
| Copyright terms: Public domain | W3C validator |