| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ssid | GIF version | ||
| Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| ssid | ⊢ 𝐴 ⊆ 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) | |
| 2 | 1 | ssriv 3187 | 1 ⊢ 𝐴 ⊆ 𝐴 | 
| Colors of variables: wff set class | 
| Syntax hints: ∈ wcel 2167 ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: ssidd 3204 eqimssi 3239 eqimss2i 3240 inv1 3487 difid 3519 undifabs 3527 pwidg 3619 elssuni 3867 unimax 3873 intmin 3894 rintm 4009 iunpw 4515 sucprcreg 4585 tfisi 4623 peano5 4634 xpss1 4773 xpss2 4774 residm 4978 resdm 4985 resmpt3 4995 ssrnres 5112 cocnvss 5195 dffn3 5418 fimacnv 5691 foima2 5798 tfrlem1 6366 rdgss 6441 fpmg 6733 findcard2d 6952 findcard2sd 6953 f1finf1o 7013 fidcenumlemr 7021 casef 7154 nnnninf 7192 1idprl 7657 1idpru 7658 ltexprlemm 7667 suplocexprlemmu 7785 elq 9696 expcl 10649 serclim0 11470 fsum2d 11600 fsumabs 11630 fsumiun 11642 fprod2d 11788 reef11 11864 ghmghmrn 13393 subrgid 13779 znf1o 14207 topopn 14244 fiinbas 14285 topbas 14303 topcld 14345 ntrtop 14364 opnneissb 14391 opnssneib 14392 opnneiid 14400 idcn 14448 cnconst2 14469 lmres 14484 retopbas 14759 cnopncntop 14780 cnopn 14781 abscncf 14821 recncf 14822 imcncf 14823 cjcncf 14824 mulc1cncf 14825 cncfcn1cntop 14830 cncfmpt2fcntop 14835 addccncf 14836 idcncf 14837 sub1cncf 14838 sub2cncf 14839 cdivcncfap 14840 negfcncf 14842 expcncf 14845 cnrehmeocntop 14846 maxcncf 14851 mincncf 14852 ivthreinc 14881 hovercncf 14882 cnlimcim 14907 cnlimc 14908 cnlimci 14909 dvcnp2cntop 14935 dvcn 14936 dvmptfsum 14961 dvef 14963 plyssc 14975 efcn 15004 | 
| Copyright terms: Public domain | W3C validator |