| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssid | GIF version | ||
| Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssid | ⊢ 𝐴 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) | |
| 2 | 1 | ssriv 3228 | 1 ⊢ 𝐴 ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ssidd 3245 eqimssi 3280 eqimss2i 3281 inv1 3528 difid 3560 undifabs 3568 pwidg 3663 elssuni 3915 unimax 3921 intmin 3942 rintm 4057 iunpw 4568 sucprcreg 4638 tfisi 4676 peano5 4687 xpss1 4826 xpss2 4827 residm 5033 resdm 5040 resmpt3 5050 ssrnres 5167 cocnvss 5250 dffn3 5480 fimacnv 5757 foima2 5868 tfrlem1 6444 rdgss 6519 fpmg 6811 findcard2d 7041 findcard2sd 7042 f1finf1o 7102 fidcenumlemr 7110 casef 7243 nnnninf 7281 1idprl 7765 1idpru 7766 ltexprlemm 7775 suplocexprlemmu 7893 elq 9805 expcl 10766 serclim0 11802 fsum2d 11932 fsumabs 11962 fsumiun 11974 fprod2d 12120 reef11 12196 ghmghmrn 13786 subrgid 14172 znf1o 14600 topopn 14667 fiinbas 14708 topbas 14726 topcld 14768 ntrtop 14787 opnneissb 14814 opnssneib 14815 opnneiid 14823 idcn 14871 cnconst2 14892 lmres 14907 retopbas 15182 cnopncntop 15203 cnopn 15204 abscncf 15244 recncf 15245 imcncf 15246 cjcncf 15247 mulc1cncf 15248 cncfcn1cntop 15253 cncfmpt2fcntop 15258 addccncf 15259 idcncf 15260 sub1cncf 15261 sub2cncf 15262 cdivcncfap 15263 negfcncf 15265 expcncf 15268 cnrehmeocntop 15269 maxcncf 15274 mincncf 15275 ivthreinc 15304 hovercncf 15305 cnlimcim 15330 cnlimc 15331 cnlimci 15332 dvcnp2cntop 15358 dvcn 15359 dvmptfsum 15384 dvef 15386 plyssc 15398 efcn 15427 domomsubct 16298 |
| Copyright terms: Public domain | W3C validator |