Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssid | GIF version |
Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
ssid | ⊢ 𝐴 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) | |
2 | 1 | ssriv 3151 | 1 ⊢ 𝐴 ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: ssidd 3168 eqimssi 3203 eqimss2i 3204 inv1 3451 difid 3483 undifabs 3491 pwidg 3580 elssuni 3824 unimax 3830 intmin 3851 rintm 3965 iunpw 4465 sucprcreg 4533 tfisi 4571 peano5 4582 xpss1 4721 xpss2 4722 residm 4923 resdm 4930 resmpt3 4940 ssrnres 5053 cocnvss 5136 dffn3 5358 fimacnv 5625 foima2 5731 tfrlem1 6287 rdgss 6362 fpmg 6652 findcard2d 6869 findcard2sd 6870 f1finf1o 6924 fidcenumlemr 6932 casef 7065 nnnninf 7102 1idprl 7552 1idpru 7553 ltexprlemm 7562 suplocexprlemmu 7680 elq 9581 expcl 10494 serclim0 11268 fsum2d 11398 fsumabs 11428 fsumiun 11440 fprod2d 11586 reef11 11662 ressid 12479 topopn 12800 fiinbas 12841 topbas 12861 topcld 12903 ntrtop 12922 opnneissb 12949 opnssneib 12950 opnneiid 12958 idcn 13006 cnconst2 13027 lmres 13042 retopbas 13317 cnopncntop 13331 abscncf 13366 recncf 13367 imcncf 13368 cjcncf 13369 mulc1cncf 13370 cncfcn1cntop 13375 cncfmpt2fcntop 13379 addccncf 13380 cdivcncfap 13381 negfcncf 13383 expcncf 13386 cnrehmeocntop 13387 cnlimcim 13434 cnlimc 13435 cnlimci 13436 dvcnp2cntop 13457 dvcn 13458 dvef 13482 efcn 13483 |
Copyright terms: Public domain | W3C validator |