| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssid | GIF version | ||
| Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssid | ⊢ 𝐴 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) | |
| 2 | 1 | ssriv 3199 | 1 ⊢ 𝐴 ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ⊆ wss 3168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3174 df-ss 3181 |
| This theorem is referenced by: ssidd 3216 eqimssi 3251 eqimss2i 3252 inv1 3499 difid 3531 undifabs 3539 pwidg 3632 elssuni 3881 unimax 3887 intmin 3908 rintm 4023 iunpw 4532 sucprcreg 4602 tfisi 4640 peano5 4651 xpss1 4790 xpss2 4791 residm 4997 resdm 5004 resmpt3 5014 ssrnres 5131 cocnvss 5214 dffn3 5443 fimacnv 5719 foima2 5830 tfrlem1 6404 rdgss 6479 fpmg 6771 findcard2d 7000 findcard2sd 7001 f1finf1o 7061 fidcenumlemr 7069 casef 7202 nnnninf 7240 1idprl 7716 1idpru 7717 ltexprlemm 7726 suplocexprlemmu 7844 elq 9756 expcl 10715 serclim0 11666 fsum2d 11796 fsumabs 11826 fsumiun 11838 fprod2d 11984 reef11 12060 ghmghmrn 13649 subrgid 14035 znf1o 14463 topopn 14530 fiinbas 14571 topbas 14589 topcld 14631 ntrtop 14650 opnneissb 14677 opnssneib 14678 opnneiid 14686 idcn 14734 cnconst2 14755 lmres 14770 retopbas 15045 cnopncntop 15066 cnopn 15067 abscncf 15107 recncf 15108 imcncf 15109 cjcncf 15110 mulc1cncf 15111 cncfcn1cntop 15116 cncfmpt2fcntop 15121 addccncf 15122 idcncf 15123 sub1cncf 15124 sub2cncf 15125 cdivcncfap 15126 negfcncf 15128 expcncf 15131 cnrehmeocntop 15132 maxcncf 15137 mincncf 15138 ivthreinc 15167 hovercncf 15168 cnlimcim 15193 cnlimc 15194 cnlimci 15195 dvcnp2cntop 15221 dvcn 15222 dvmptfsum 15247 dvef 15249 plyssc 15261 efcn 15290 domomsubct 16053 |
| Copyright terms: Public domain | W3C validator |