Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euclemma | GIF version |
Description: Euclid's lemma. A prime number divides the product of two integers iff it divides at least one of them. Theorem 1.9 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
euclemma | ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ (𝑀 · 𝑁) ↔ (𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coprm 12076 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ) → (¬ 𝑃 ∥ 𝑀 ↔ (𝑃 gcd 𝑀) = 1)) | |
2 | 1 | 3adant3 1007 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃 ∥ 𝑀 ↔ (𝑃 gcd 𝑀) = 1)) |
3 | 2 | anbi2d 460 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ (𝑀 · 𝑁) ∧ ¬ 𝑃 ∥ 𝑀) ↔ (𝑃 ∥ (𝑀 · 𝑁) ∧ (𝑃 gcd 𝑀) = 1))) |
4 | prmz 12043 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
5 | coprmdvds 12024 | . . . . . 6 ⊢ ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ (𝑀 · 𝑁) ∧ (𝑃 gcd 𝑀) = 1) → 𝑃 ∥ 𝑁)) | |
6 | 4, 5 | syl3an1 1261 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ (𝑀 · 𝑁) ∧ (𝑃 gcd 𝑀) = 1) → 𝑃 ∥ 𝑁)) |
7 | 3, 6 | sylbid 149 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ (𝑀 · 𝑁) ∧ ¬ 𝑃 ∥ 𝑀) → 𝑃 ∥ 𝑁)) |
8 | 7 | expd 256 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ (𝑀 · 𝑁) → (¬ 𝑃 ∥ 𝑀 → 𝑃 ∥ 𝑁))) |
9 | prmnn 12042 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
10 | 9 | 3ad2ant1 1008 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑃 ∈ ℕ) |
11 | simp2 988 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ) | |
12 | dvdsdc 11738 | . . . . 5 ⊢ ((𝑃 ∈ ℕ ∧ 𝑀 ∈ ℤ) → DECID 𝑃 ∥ 𝑀) | |
13 | 10, 11, 12 | syl2anc 409 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑃 ∥ 𝑀) |
14 | dfordc 882 | . . . 4 ⊢ (DECID 𝑃 ∥ 𝑀 → ((𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁) ↔ (¬ 𝑃 ∥ 𝑀 → 𝑃 ∥ 𝑁))) | |
15 | 13, 14 | syl 14 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁) ↔ (¬ 𝑃 ∥ 𝑀 → 𝑃 ∥ 𝑁))) |
16 | 8, 15 | sylibrd 168 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ (𝑀 · 𝑁) → (𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁))) |
17 | ordvdsmul 11774 | . . 3 ⊢ ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁) → 𝑃 ∥ (𝑀 · 𝑁))) | |
18 | 4, 17 | syl3an1 1261 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁) → 𝑃 ∥ (𝑀 · 𝑁))) |
19 | 16, 18 | impbid 128 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ (𝑀 · 𝑁) ↔ (𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 DECID wdc 824 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 (class class class)co 5842 1c1 7754 · cmul 7758 ℕcn 8857 ℤcz 9191 ∥ cdvds 11727 gcd cgcd 11875 ℙcprime 12039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-1o 6384 df-2o 6385 df-er 6501 df-en 6707 df-sup 6949 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fzo 10078 df-fl 10205 df-mod 10258 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-dvds 11728 df-gcd 11876 df-prm 12040 |
This theorem is referenced by: isprm6 12079 prmdvdsexp 12080 prmfac1 12084 sqpweven 12107 2sqpwodd 12108 pcpremul 12225 lgslem1 13541 lgsdir2 13574 2sqlem4 13594 2sqlem6 13596 |
Copyright terms: Public domain | W3C validator |