| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euclemma | GIF version | ||
| Description: Euclid's lemma. A prime number divides the product of two integers iff it divides at least one of them. Theorem 1.9 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 17-Nov-2012.) |
| Ref | Expression |
|---|---|
| euclemma | ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ (𝑀 · 𝑁) ↔ (𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coprm 12541 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ) → (¬ 𝑃 ∥ 𝑀 ↔ (𝑃 gcd 𝑀) = 1)) | |
| 2 | 1 | 3adant3 1020 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃 ∥ 𝑀 ↔ (𝑃 gcd 𝑀) = 1)) |
| 3 | 2 | anbi2d 464 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ (𝑀 · 𝑁) ∧ ¬ 𝑃 ∥ 𝑀) ↔ (𝑃 ∥ (𝑀 · 𝑁) ∧ (𝑃 gcd 𝑀) = 1))) |
| 4 | prmz 12508 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
| 5 | coprmdvds 12489 | . . . . . 6 ⊢ ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ (𝑀 · 𝑁) ∧ (𝑃 gcd 𝑀) = 1) → 𝑃 ∥ 𝑁)) | |
| 6 | 4, 5 | syl3an1 1283 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ (𝑀 · 𝑁) ∧ (𝑃 gcd 𝑀) = 1) → 𝑃 ∥ 𝑁)) |
| 7 | 3, 6 | sylbid 150 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ (𝑀 · 𝑁) ∧ ¬ 𝑃 ∥ 𝑀) → 𝑃 ∥ 𝑁)) |
| 8 | 7 | expd 258 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ (𝑀 · 𝑁) → (¬ 𝑃 ∥ 𝑀 → 𝑃 ∥ 𝑁))) |
| 9 | prmnn 12507 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 10 | 9 | 3ad2ant1 1021 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑃 ∈ ℕ) |
| 11 | simp2 1001 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 12 | dvdsdc 12184 | . . . . 5 ⊢ ((𝑃 ∈ ℕ ∧ 𝑀 ∈ ℤ) → DECID 𝑃 ∥ 𝑀) | |
| 13 | 10, 11, 12 | syl2anc 411 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑃 ∥ 𝑀) |
| 14 | dfordc 894 | . . . 4 ⊢ (DECID 𝑃 ∥ 𝑀 → ((𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁) ↔ (¬ 𝑃 ∥ 𝑀 → 𝑃 ∥ 𝑁))) | |
| 15 | 13, 14 | syl 14 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁) ↔ (¬ 𝑃 ∥ 𝑀 → 𝑃 ∥ 𝑁))) |
| 16 | 8, 15 | sylibrd 169 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ (𝑀 · 𝑁) → (𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁))) |
| 17 | ordvdsmul 12220 | . . 3 ⊢ ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁) → 𝑃 ∥ (𝑀 · 𝑁))) | |
| 18 | 4, 17 | syl3an1 1283 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁) → 𝑃 ∥ (𝑀 · 𝑁))) |
| 19 | 16, 18 | impbid 129 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ (𝑀 · 𝑁) ↔ (𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 DECID wdc 836 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 class class class wbr 4051 (class class class)co 5957 1c1 7946 · cmul 7950 ℕcn 9056 ℤcz 9392 ∥ cdvds 12173 gcd cgcd 12349 ℙcprime 12504 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-1o 6515 df-2o 6516 df-er 6633 df-en 6841 df-sup 7101 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-fz 10151 df-fzo 10285 df-fl 10435 df-mod 10490 df-seqfrec 10615 df-exp 10706 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-dvds 12174 df-gcd 12350 df-prm 12505 |
| This theorem is referenced by: isprm6 12544 prmdvdsexp 12545 prmfac1 12549 sqpweven 12572 2sqpwodd 12573 pcpremul 12691 4sqlem11 12799 znidom 14494 wilthlem1 15527 lgslem1 15552 lgsdir2 15585 2sqlem4 15670 2sqlem6 15672 |
| Copyright terms: Public domain | W3C validator |