ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djueq2 GIF version

Theorem djueq2 7107
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
djueq2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem djueq2
StepHypRef Expression
1 eqid 2196 . 2 𝐶 = 𝐶
2 djueq12 7105 . 2 ((𝐶 = 𝐶𝐴 = 𝐵) → (𝐶𝐴) = (𝐶𝐵))
31, 2mpan 424 1 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cdju 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-opab 4095  df-xp 4669  df-dju 7104
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator