ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqnq0m GIF version

Theorem nqnq0m 7610
Description: Multiplication of positive fractions is equal with ·Q or ·Q0. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
nqnq0m ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))

Proof of Theorem nqnq0m
Dummy variables 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7533 . . . 4 (𝐴Q → ∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ))
2 nqpi 7533 . . . 4 (𝐵Q → ∃𝑣𝑢((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q ))
31, 2anim12i 338 . . 3 ((𝐴Q𝐵Q) → (∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ∃𝑣𝑢((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
4 ee4anv 1965 . . 3 (∃𝑧𝑤𝑣𝑢(((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) ↔ (∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ∃𝑣𝑢((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
53, 4sylibr 134 . 2 ((𝐴Q𝐵Q) → ∃𝑧𝑤𝑣𝑢(((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
6 oveq12 5983 . . . . . . 7 ((𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q ) → (𝐴 ·Q 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q ·Q [⟨𝑣, 𝑢⟩] ~Q ))
7 mulpiord 7472 . . . . . . . . . . 11 ((𝑧N𝑣N) → (𝑧 ·N 𝑣) = (𝑧 ·o 𝑣))
87ad2ant2r 509 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧 ·N 𝑣) = (𝑧 ·o 𝑣))
9 mulpiord 7472 . . . . . . . . . . 11 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) = (𝑤 ·o 𝑢))
109ad2ant2l 508 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) = (𝑤 ·o 𝑢))
118, 10opeq12d 3844 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩ = ⟨(𝑧 ·o 𝑣), (𝑤 ·o 𝑢)⟩)
1211eceq1d 6686 . . . . . . . 8 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q0 = [⟨(𝑧 ·o 𝑣), (𝑤 ·o 𝑢)⟩] ~Q0 )
13 mulpipqqs 7528 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q ·Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q )
14 mulclpi 7483 . . . . . . . . . . 11 ((𝑧N𝑣N) → (𝑧 ·N 𝑣) ∈ N)
1514ad2ant2r 509 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧 ·N 𝑣) ∈ N)
16 mulclpi 7483 . . . . . . . . . . 11 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) ∈ N)
1716ad2ant2l 508 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) ∈ N)
18 nqnq0pi 7593 . . . . . . . . . 10 (((𝑧 ·N 𝑣) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N) → [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q0 = [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q )
1915, 17, 18syl2anc 411 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q0 = [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q )
2013, 19eqtr4d 2245 . . . . . . . 8 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q ·Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q0 )
21 pinn 7464 . . . . . . . . . 10 (𝑧N𝑧 ∈ ω)
2221anim1i 340 . . . . . . . . 9 ((𝑧N𝑤N) → (𝑧 ∈ ω ∧ 𝑤N))
23 pinn 7464 . . . . . . . . . 10 (𝑣N𝑣 ∈ ω)
2423anim1i 340 . . . . . . . . 9 ((𝑣N𝑢N) → (𝑣 ∈ ω ∧ 𝑢N))
25 mulnnnq0 7605 . . . . . . . . 9 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨(𝑧 ·o 𝑣), (𝑤 ·o 𝑢)⟩] ~Q0 )
2622, 24, 25syl2an 289 . . . . . . . 8 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨(𝑧 ·o 𝑣), (𝑤 ·o 𝑢)⟩] ~Q0 )
2712, 20, 263eqtr4d 2252 . . . . . . 7 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q ·Q [⟨𝑣, 𝑢⟩] ~Q ) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
286, 27sylan9eqr 2264 . . . . . 6 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 ·Q 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
29 nqnq0pi 7593 . . . . . . . . . . 11 ((𝑧N𝑤N) → [⟨𝑧, 𝑤⟩] ~Q0 = [⟨𝑧, 𝑤⟩] ~Q )
3029adantr 276 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → [⟨𝑧, 𝑤⟩] ~Q0 = [⟨𝑧, 𝑤⟩] ~Q )
3130eqeq2d 2221 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐴 = [⟨𝑧, 𝑤⟩] ~Q ))
32 nqnq0pi 7593 . . . . . . . . . . 11 ((𝑣N𝑢N) → [⟨𝑣, 𝑢⟩] ~Q0 = [⟨𝑣, 𝑢⟩] ~Q )
3332adantl 277 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → [⟨𝑣, 𝑢⟩] ~Q0 = [⟨𝑣, 𝑢⟩] ~Q )
3433eqeq2d 2221 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝐵 = [⟨𝑣, 𝑢⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q ))
3531, 34anbi12d 473 . . . . . . . 8 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q0 ) ↔ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
3635pm5.32i 454 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q0 )) ↔ (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
37 oveq12 5983 . . . . . . . 8 ((𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q0 ) → (𝐴 ·Q0 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
3837adantl 277 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q0 )) → (𝐴 ·Q0 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
3936, 38sylbir 135 . . . . . 6 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 ·Q0 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
4028, 39eqtr4d 2245 . . . . 5 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))
4140an4s 590 . . . 4 ((((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))
4241exlimivv 1923 . . 3 (∃𝑣𝑢(((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))
4342exlimivv 1923 . 2 (∃𝑧𝑤𝑣𝑢(((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))
445, 43syl 14 1 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wex 1518  wcel 2180  cop 3649  ωcom 4659  (class class class)co 5974   ·o comu 6530  [cec 6648  Ncnpi 7427   ·N cmi 7429   ~Q ceq 7434  Qcnq 7435   ·Q cmq 7438   ~Q0 ceq0 7441   ·Q0 cmq0 7445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-mi 7461  df-mpq 7500  df-enq 7502  df-nqqs 7503  df-mqqs 7505  df-enq0 7579  df-nq0 7580  df-mq0 7583
This theorem is referenced by:  prarloclemlo  7649  prarloclemcalc  7657
  Copyright terms: Public domain W3C validator