ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqnq0m GIF version

Theorem nqnq0m 7650
Description: Multiplication of positive fractions is equal with ·Q or ·Q0. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
nqnq0m ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))

Proof of Theorem nqnq0m
Dummy variables 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7573 . . . 4 (𝐴Q → ∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ))
2 nqpi 7573 . . . 4 (𝐵Q → ∃𝑣𝑢((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q ))
31, 2anim12i 338 . . 3 ((𝐴Q𝐵Q) → (∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ∃𝑣𝑢((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
4 ee4anv 1985 . . 3 (∃𝑧𝑤𝑣𝑢(((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) ↔ (∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ∃𝑣𝑢((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
53, 4sylibr 134 . 2 ((𝐴Q𝐵Q) → ∃𝑧𝑤𝑣𝑢(((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
6 oveq12 6016 . . . . . . 7 ((𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q ) → (𝐴 ·Q 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q ·Q [⟨𝑣, 𝑢⟩] ~Q ))
7 mulpiord 7512 . . . . . . . . . . 11 ((𝑧N𝑣N) → (𝑧 ·N 𝑣) = (𝑧 ·o 𝑣))
87ad2ant2r 509 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧 ·N 𝑣) = (𝑧 ·o 𝑣))
9 mulpiord 7512 . . . . . . . . . . 11 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) = (𝑤 ·o 𝑢))
109ad2ant2l 508 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) = (𝑤 ·o 𝑢))
118, 10opeq12d 3865 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩ = ⟨(𝑧 ·o 𝑣), (𝑤 ·o 𝑢)⟩)
1211eceq1d 6724 . . . . . . . 8 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q0 = [⟨(𝑧 ·o 𝑣), (𝑤 ·o 𝑢)⟩] ~Q0 )
13 mulpipqqs 7568 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q ·Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q )
14 mulclpi 7523 . . . . . . . . . . 11 ((𝑧N𝑣N) → (𝑧 ·N 𝑣) ∈ N)
1514ad2ant2r 509 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧 ·N 𝑣) ∈ N)
16 mulclpi 7523 . . . . . . . . . . 11 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) ∈ N)
1716ad2ant2l 508 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) ∈ N)
18 nqnq0pi 7633 . . . . . . . . . 10 (((𝑧 ·N 𝑣) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N) → [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q0 = [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q )
1915, 17, 18syl2anc 411 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q0 = [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q )
2013, 19eqtr4d 2265 . . . . . . . 8 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q ·Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q0 )
21 pinn 7504 . . . . . . . . . 10 (𝑧N𝑧 ∈ ω)
2221anim1i 340 . . . . . . . . 9 ((𝑧N𝑤N) → (𝑧 ∈ ω ∧ 𝑤N))
23 pinn 7504 . . . . . . . . . 10 (𝑣N𝑣 ∈ ω)
2423anim1i 340 . . . . . . . . 9 ((𝑣N𝑢N) → (𝑣 ∈ ω ∧ 𝑢N))
25 mulnnnq0 7645 . . . . . . . . 9 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨(𝑧 ·o 𝑣), (𝑤 ·o 𝑢)⟩] ~Q0 )
2622, 24, 25syl2an 289 . . . . . . . 8 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨(𝑧 ·o 𝑣), (𝑤 ·o 𝑢)⟩] ~Q0 )
2712, 20, 263eqtr4d 2272 . . . . . . 7 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q ·Q [⟨𝑣, 𝑢⟩] ~Q ) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
286, 27sylan9eqr 2284 . . . . . 6 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 ·Q 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
29 nqnq0pi 7633 . . . . . . . . . . 11 ((𝑧N𝑤N) → [⟨𝑧, 𝑤⟩] ~Q0 = [⟨𝑧, 𝑤⟩] ~Q )
3029adantr 276 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → [⟨𝑧, 𝑤⟩] ~Q0 = [⟨𝑧, 𝑤⟩] ~Q )
3130eqeq2d 2241 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐴 = [⟨𝑧, 𝑤⟩] ~Q ))
32 nqnq0pi 7633 . . . . . . . . . . 11 ((𝑣N𝑢N) → [⟨𝑣, 𝑢⟩] ~Q0 = [⟨𝑣, 𝑢⟩] ~Q )
3332adantl 277 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → [⟨𝑣, 𝑢⟩] ~Q0 = [⟨𝑣, 𝑢⟩] ~Q )
3433eqeq2d 2241 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝐵 = [⟨𝑣, 𝑢⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q ))
3531, 34anbi12d 473 . . . . . . . 8 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q0 ) ↔ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
3635pm5.32i 454 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q0 )) ↔ (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
37 oveq12 6016 . . . . . . . 8 ((𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q0 ) → (𝐴 ·Q0 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
3837adantl 277 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q0 )) → (𝐴 ·Q0 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
3936, 38sylbir 135 . . . . . 6 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 ·Q0 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
4028, 39eqtr4d 2265 . . . . 5 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))
4140an4s 590 . . . 4 ((((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))
4241exlimivv 1943 . . 3 (∃𝑣𝑢(((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))
4342exlimivv 1943 . 2 (∃𝑧𝑤𝑣𝑢(((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))
445, 43syl 14 1 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wex 1538  wcel 2200  cop 3669  ωcom 4682  (class class class)co 6007   ·o comu 6566  [cec 6686  Ncnpi 7467   ·N cmi 7469   ~Q ceq 7474  Qcnq 7475   ·Q cmq 7478   ~Q0 ceq0 7481   ·Q0 cmq0 7485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-oadd 6572  df-omul 6573  df-er 6688  df-ec 6690  df-qs 6694  df-ni 7499  df-mi 7501  df-mpq 7540  df-enq 7542  df-nqqs 7543  df-mqqs 7545  df-enq0 7619  df-nq0 7620  df-mq0 7623
This theorem is referenced by:  prarloclemlo  7689  prarloclemcalc  7697
  Copyright terms: Public domain W3C validator