ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqnq0m GIF version

Theorem nqnq0m 7211
Description: Multiplication of positive fractions is equal with ·Q or ·Q0. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
nqnq0m ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))

Proof of Theorem nqnq0m
Dummy variables 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7134 . . . 4 (𝐴Q → ∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ))
2 nqpi 7134 . . . 4 (𝐵Q → ∃𝑣𝑢((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q ))
31, 2anim12i 334 . . 3 ((𝐴Q𝐵Q) → (∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ∃𝑣𝑢((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
4 ee4anv 1884 . . 3 (∃𝑧𝑤𝑣𝑢(((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) ↔ (∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ∃𝑣𝑢((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
53, 4sylibr 133 . 2 ((𝐴Q𝐵Q) → ∃𝑧𝑤𝑣𝑢(((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
6 oveq12 5737 . . . . . . 7 ((𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q ) → (𝐴 ·Q 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q ·Q [⟨𝑣, 𝑢⟩] ~Q ))
7 mulpiord 7073 . . . . . . . . . . 11 ((𝑧N𝑣N) → (𝑧 ·N 𝑣) = (𝑧 ·o 𝑣))
87ad2ant2r 498 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧 ·N 𝑣) = (𝑧 ·o 𝑣))
9 mulpiord 7073 . . . . . . . . . . 11 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) = (𝑤 ·o 𝑢))
109ad2ant2l 497 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) = (𝑤 ·o 𝑢))
118, 10opeq12d 3679 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩ = ⟨(𝑧 ·o 𝑣), (𝑤 ·o 𝑢)⟩)
1211eceq1d 6419 . . . . . . . 8 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q0 = [⟨(𝑧 ·o 𝑣), (𝑤 ·o 𝑢)⟩] ~Q0 )
13 mulpipqqs 7129 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q ·Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q )
14 mulclpi 7084 . . . . . . . . . . 11 ((𝑧N𝑣N) → (𝑧 ·N 𝑣) ∈ N)
1514ad2ant2r 498 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧 ·N 𝑣) ∈ N)
16 mulclpi 7084 . . . . . . . . . . 11 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) ∈ N)
1716ad2ant2l 497 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) ∈ N)
18 nqnq0pi 7194 . . . . . . . . . 10 (((𝑧 ·N 𝑣) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N) → [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q0 = [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q )
1915, 17, 18syl2anc 406 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q0 = [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q )
2013, 19eqtr4d 2150 . . . . . . . 8 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q ·Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨(𝑧 ·N 𝑣), (𝑤 ·N 𝑢)⟩] ~Q0 )
21 pinn 7065 . . . . . . . . . 10 (𝑧N𝑧 ∈ ω)
2221anim1i 336 . . . . . . . . 9 ((𝑧N𝑤N) → (𝑧 ∈ ω ∧ 𝑤N))
23 pinn 7065 . . . . . . . . . 10 (𝑣N𝑣 ∈ ω)
2423anim1i 336 . . . . . . . . 9 ((𝑣N𝑢N) → (𝑣 ∈ ω ∧ 𝑢N))
25 mulnnnq0 7206 . . . . . . . . 9 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨(𝑧 ·o 𝑣), (𝑤 ·o 𝑢)⟩] ~Q0 )
2622, 24, 25syl2an 285 . . . . . . . 8 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨(𝑧 ·o 𝑣), (𝑤 ·o 𝑢)⟩] ~Q0 )
2712, 20, 263eqtr4d 2157 . . . . . . 7 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q ·Q [⟨𝑣, 𝑢⟩] ~Q ) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
286, 27sylan9eqr 2169 . . . . . 6 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 ·Q 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
29 nqnq0pi 7194 . . . . . . . . . . 11 ((𝑧N𝑤N) → [⟨𝑧, 𝑤⟩] ~Q0 = [⟨𝑧, 𝑤⟩] ~Q )
3029adantr 272 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → [⟨𝑧, 𝑤⟩] ~Q0 = [⟨𝑧, 𝑤⟩] ~Q )
3130eqeq2d 2126 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐴 = [⟨𝑧, 𝑤⟩] ~Q ))
32 nqnq0pi 7194 . . . . . . . . . . 11 ((𝑣N𝑢N) → [⟨𝑣, 𝑢⟩] ~Q0 = [⟨𝑣, 𝑢⟩] ~Q )
3332adantl 273 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → [⟨𝑣, 𝑢⟩] ~Q0 = [⟨𝑣, 𝑢⟩] ~Q )
3433eqeq2d 2126 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝐵 = [⟨𝑣, 𝑢⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q ))
3531, 34anbi12d 462 . . . . . . . 8 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q0 ) ↔ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
3635pm5.32i 447 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q0 )) ↔ (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
37 oveq12 5737 . . . . . . . 8 ((𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q0 ) → (𝐴 ·Q0 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
3837adantl 273 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q0 )) → (𝐴 ·Q0 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
3936, 38sylbir 134 . . . . . 6 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 ·Q0 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
4028, 39eqtr4d 2150 . . . . 5 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))
4140an4s 560 . . . 4 ((((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))
4241exlimivv 1850 . . 3 (∃𝑣𝑢(((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))
4342exlimivv 1850 . 2 (∃𝑧𝑤𝑣𝑢(((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))
445, 43syl 14 1 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1314  wex 1451  wcel 1463  cop 3496  ωcom 4464  (class class class)co 5728   ·o comu 6265  [cec 6381  Ncnpi 7028   ·N cmi 7030   ~Q ceq 7035  Qcnq 7036   ·Q cmq 7039   ~Q0 ceq0 7042   ·Q0 cmq0 7046
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-oadd 6271  df-omul 6272  df-er 6383  df-ec 6385  df-qs 6389  df-ni 7060  df-mi 7062  df-mpq 7101  df-enq 7103  df-nqqs 7104  df-mqqs 7106  df-enq0 7180  df-nq0 7181  df-mq0 7184
This theorem is referenced by:  prarloclemlo  7250  prarloclemcalc  7258
  Copyright terms: Public domain W3C validator