ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltdcnq GIF version

Theorem ltdcnq 7106
Description: Less-than for positive fractions is decidable. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
ltdcnq ((𝐴Q𝐵Q) → DECID 𝐴 <Q 𝐵)

Proof of Theorem ltdcnq
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7087 . . . 4 (𝐴Q → ∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ))
2 nqpi 7087 . . . 4 (𝐵Q → ∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q ))
31, 2anim12i 334 . . 3 ((𝐴Q𝐵Q) → (∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )))
4 ee4anv 1869 . . 3 (∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) ↔ (∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )))
53, 4sylibr 133 . 2 ((𝐴Q𝐵Q) → ∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )))
6 mulclpi 7037 . . . . . . . . 9 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) ∈ N)
7 mulclpi 7037 . . . . . . . . 9 ((𝑦N𝑧N) → (𝑦 ·N 𝑧) ∈ N)
8 ltdcpi 7032 . . . . . . . . 9 (((𝑥 ·N 𝑤) ∈ N ∧ (𝑦 ·N 𝑧) ∈ N) → DECID (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧))
96, 7, 8syl2an 285 . . . . . . . 8 (((𝑥N𝑤N) ∧ (𝑦N𝑧N)) → DECID (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧))
109an42s 559 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → DECID (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧))
11 ordpipqqs 7083 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧)))
1211dcbid 792 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (DECID [⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~QDECID (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧)))
1310, 12mpbird 166 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → DECID [⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q )
1413ad2ant2r 496 . . . . 5 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) → DECID [⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q )
15 breq12 3880 . . . . . . 7 ((𝐴 = [⟨𝑥, 𝑦⟩] ~Q𝐵 = [⟨𝑧, 𝑤⟩] ~Q ) → (𝐴 <Q 𝐵 ↔ [⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ))
1615ad2ant2l 495 . . . . . 6 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) → (𝐴 <Q 𝐵 ↔ [⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ))
1716dcbid 792 . . . . 5 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) → (DECID 𝐴 <Q 𝐵DECID [⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ))
1814, 17mpbird 166 . . . 4 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) → DECID 𝐴 <Q 𝐵)
1918exlimivv 1835 . . 3 (∃𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) → DECID 𝐴 <Q 𝐵)
2019exlimivv 1835 . 2 (∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) → DECID 𝐴 <Q 𝐵)
215, 20syl 14 1 ((𝐴Q𝐵Q) → DECID 𝐴 <Q 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 786   = wceq 1299  wex 1436  wcel 1448  cop 3477   class class class wbr 3875  (class class class)co 5706  [cec 6357  Ncnpi 6981   ·N cmi 6983   <N clti 6984   ~Q ceq 6988  Qcnq 6989   <Q cltq 6994
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-mi 7015  df-lti 7016  df-enq 7056  df-nqqs 7057  df-ltnqqs 7062
This theorem is referenced by:  distrlem4prl  7293  distrlem4pru  7294
  Copyright terms: Public domain W3C validator