Step | Hyp | Ref
| Expression |
1 | | nqpi 7319 |
. . . 4
⊢ (𝐴 ∈ Q →
∃𝑥∃𝑦((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q
)) |
2 | | nqpi 7319 |
. . . 4
⊢ (𝐵 ∈ Q →
∃𝑧∃𝑤((𝑧 ∈ N ∧ 𝑤 ∈ N) ∧
𝐵 = [〈𝑧, 𝑤〉] ~Q
)) |
3 | 1, 2 | anim12i 336 |
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (∃𝑥∃𝑦((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
∃𝑧∃𝑤((𝑧 ∈ N ∧ 𝑤 ∈ N) ∧
𝐵 = [〈𝑧, 𝑤〉] ~Q
))) |
4 | | ee4anv 1922 |
. . 3
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤(((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ N
∧ 𝑤 ∈
N) ∧ 𝐵 =
[〈𝑧, 𝑤〉]
~Q )) ↔ (∃𝑥∃𝑦((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
∃𝑧∃𝑤((𝑧 ∈ N ∧ 𝑤 ∈ N) ∧
𝐵 = [〈𝑧, 𝑤〉] ~Q
))) |
5 | 3, 4 | sylibr 133 |
. 2
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ ∃𝑥∃𝑦∃𝑧∃𝑤(((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ N
∧ 𝑤 ∈
N) ∧ 𝐵 =
[〈𝑧, 𝑤〉]
~Q ))) |
6 | | mulclpi 7269 |
. . . . . . . . 9
⊢ ((𝑥 ∈ N ∧
𝑤 ∈ N)
→ (𝑥
·N 𝑤) ∈ N) |
7 | | mulclpi 7269 |
. . . . . . . . 9
⊢ ((𝑦 ∈ N ∧
𝑧 ∈ N)
→ (𝑦
·N 𝑧) ∈ N) |
8 | | ltdcpi 7264 |
. . . . . . . . 9
⊢ (((𝑥
·N 𝑤) ∈ N ∧ (𝑦
·N 𝑧) ∈ N) →
DECID (𝑥
·N 𝑤) <N (𝑦
·N 𝑧)) |
9 | 6, 7, 8 | syl2an 287 |
. . . . . . . 8
⊢ (((𝑥 ∈ N ∧
𝑤 ∈ N)
∧ (𝑦 ∈
N ∧ 𝑧
∈ N)) → DECID (𝑥 ·N 𝑤) <N
(𝑦
·N 𝑧)) |
10 | 9 | an42s 579 |
. . . . . . 7
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → DECID (𝑥 ·N 𝑤) <N
(𝑦
·N 𝑧)) |
11 | | ordpipqqs 7315 |
. . . . . . . 8
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → ([〈𝑥, 𝑦〉] ~Q
<Q [〈𝑧, 𝑤〉] ~Q ↔
(𝑥
·N 𝑤) <N (𝑦
·N 𝑧))) |
12 | 11 | dcbid 828 |
. . . . . . 7
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → (DECID [〈𝑥, 𝑦〉] ~Q
<Q [〈𝑧, 𝑤〉] ~Q ↔
DECID (𝑥
·N 𝑤) <N (𝑦
·N 𝑧))) |
13 | 10, 12 | mpbird 166 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → DECID [〈𝑥, 𝑦〉] ~Q
<Q [〈𝑧, 𝑤〉] ~Q
) |
14 | 13 | ad2ant2r 501 |
. . . . 5
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ 𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ N
∧ 𝑤 ∈
N) ∧ 𝐵 =
[〈𝑧, 𝑤〉]
~Q )) → DECID [〈𝑥, 𝑦〉] ~Q
<Q [〈𝑧, 𝑤〉] ~Q
) |
15 | | breq12 3987 |
. . . . . . 7
⊢ ((𝐴 = [〈𝑥, 𝑦〉] ~Q ∧
𝐵 = [〈𝑧, 𝑤〉] ~Q ) →
(𝐴
<Q 𝐵 ↔ [〈𝑥, 𝑦〉] ~Q
<Q [〈𝑧, 𝑤〉] ~Q
)) |
16 | 15 | ad2ant2l 500 |
. . . . . 6
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ 𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ N
∧ 𝑤 ∈
N) ∧ 𝐵 =
[〈𝑧, 𝑤〉]
~Q )) → (𝐴 <Q 𝐵 ↔ [〈𝑥, 𝑦〉] ~Q
<Q [〈𝑧, 𝑤〉] ~Q
)) |
17 | 16 | dcbid 828 |
. . . . 5
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ 𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ N
∧ 𝑤 ∈
N) ∧ 𝐵 =
[〈𝑧, 𝑤〉]
~Q )) → (DECID 𝐴 <Q 𝐵 ↔ DECID
[〈𝑥, 𝑦〉]
~Q <Q [〈𝑧, 𝑤〉] ~Q
)) |
18 | 14, 17 | mpbird 166 |
. . . 4
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ 𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ N
∧ 𝑤 ∈
N) ∧ 𝐵 =
[〈𝑧, 𝑤〉]
~Q )) → DECID 𝐴 <Q 𝐵) |
19 | 18 | exlimivv 1884 |
. . 3
⊢
(∃𝑧∃𝑤(((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ N
∧ 𝑤 ∈
N) ∧ 𝐵 =
[〈𝑧, 𝑤〉]
~Q )) → DECID 𝐴 <Q 𝐵) |
20 | 19 | exlimivv 1884 |
. 2
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤(((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ N
∧ 𝑤 ∈
N) ∧ 𝐵 =
[〈𝑧, 𝑤〉]
~Q )) → DECID 𝐴 <Q 𝐵) |
21 | 5, 20 | syl 14 |
1
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ DECID 𝐴 <Q 𝐵) |