ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqnq0a GIF version

Theorem nqnq0a 7538
Description: Addition of positive fractions is equal with +Q or +Q0. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
nqnq0a ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵))

Proof of Theorem nqnq0a
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7462 . . . 4 (𝐴Q → ∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ))
2 nqpi 7462 . . . 4 (𝐵Q → ∃𝑣𝑢((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q ))
31, 2anim12i 338 . . 3 ((𝐴Q𝐵Q) → (∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ∃𝑣𝑢((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
4 ee4anv 1953 . . 3 (∃𝑧𝑤𝑣𝑢(((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) ↔ (∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ∃𝑣𝑢((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
53, 4sylibr 134 . 2 ((𝐴Q𝐵Q) → ∃𝑧𝑤𝑣𝑢(((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
6 oveq12 5934 . . . . . . 7 ((𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q ) → (𝐴 +Q 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q +Q [⟨𝑣, 𝑢⟩] ~Q ))
7 mulclpi 7412 . . . . . . . . . . . . 13 ((𝑧N𝑢N) → (𝑧 ·N 𝑢) ∈ N)
87ad2ant2rl 511 . . . . . . . . . . . 12 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧 ·N 𝑢) ∈ N)
9 mulclpi 7412 . . . . . . . . . . . . 13 ((𝑤N𝑣N) → (𝑤 ·N 𝑣) ∈ N)
109ad2ant2lr 510 . . . . . . . . . . . 12 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑣) ∈ N)
11 addpiord 7400 . . . . . . . . . . . 12 (((𝑧 ·N 𝑢) ∈ N ∧ (𝑤 ·N 𝑣) ∈ N) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) = ((𝑧 ·N 𝑢) +o (𝑤 ·N 𝑣)))
128, 10, 11syl2anc 411 . . . . . . . . . . 11 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) = ((𝑧 ·N 𝑢) +o (𝑤 ·N 𝑣)))
13 mulpiord 7401 . . . . . . . . . . . . 13 ((𝑧N𝑢N) → (𝑧 ·N 𝑢) = (𝑧 ·o 𝑢))
1413ad2ant2rl 511 . . . . . . . . . . . 12 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧 ·N 𝑢) = (𝑧 ·o 𝑢))
15 mulpiord 7401 . . . . . . . . . . . . 13 ((𝑤N𝑣N) → (𝑤 ·N 𝑣) = (𝑤 ·o 𝑣))
1615ad2ant2lr 510 . . . . . . . . . . . 12 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑣) = (𝑤 ·o 𝑣))
1714, 16oveq12d 5943 . . . . . . . . . . 11 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑧 ·N 𝑢) +o (𝑤 ·N 𝑣)) = ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))
1812, 17eqtrd 2229 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) = ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))
19 mulpiord 7401 . . . . . . . . . . 11 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) = (𝑤 ·o 𝑢))
2019ad2ant2l 508 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) = (𝑤 ·o 𝑢))
2118, 20opeq12d 3817 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩ = ⟨((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)), (𝑤 ·o 𝑢)⟩)
2221eceq1d 6637 . . . . . . . 8 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q0 = [⟨((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)), (𝑤 ·o 𝑢)⟩] ~Q0 )
23 addpipqqs 7454 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q +Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q )
24 addclpi 7411 . . . . . . . . . . 11 (((𝑧 ·N 𝑢) ∈ N ∧ (𝑤 ·N 𝑣) ∈ N) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
258, 10, 24syl2anc 411 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
26 mulclpi 7412 . . . . . . . . . . 11 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) ∈ N)
2726ad2ant2l 508 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) ∈ N)
28 nqnq0pi 7522 . . . . . . . . . 10 ((((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N) → [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q0 = [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q )
2925, 27, 28syl2anc 411 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q0 = [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q )
3023, 29eqtr4d 2232 . . . . . . . 8 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q +Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q0 )
31 pinn 7393 . . . . . . . . . 10 (𝑧N𝑧 ∈ ω)
3231anim1i 340 . . . . . . . . 9 ((𝑧N𝑤N) → (𝑧 ∈ ω ∧ 𝑤N))
33 pinn 7393 . . . . . . . . . 10 (𝑣N𝑣 ∈ ω)
3433anim1i 340 . . . . . . . . 9 ((𝑣N𝑢N) → (𝑣 ∈ ω ∧ 𝑢N))
35 addnnnq0 7533 . . . . . . . . 9 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)), (𝑤 ·o 𝑢)⟩] ~Q0 )
3632, 34, 35syl2an 289 . . . . . . . 8 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)), (𝑤 ·o 𝑢)⟩] ~Q0 )
3722, 30, 363eqtr4d 2239 . . . . . . 7 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q +Q [⟨𝑣, 𝑢⟩] ~Q ) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
386, 37sylan9eqr 2251 . . . . . 6 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 +Q 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
39 nqnq0pi 7522 . . . . . . . . . . 11 ((𝑧N𝑤N) → [⟨𝑧, 𝑤⟩] ~Q0 = [⟨𝑧, 𝑤⟩] ~Q )
4039adantr 276 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → [⟨𝑧, 𝑤⟩] ~Q0 = [⟨𝑧, 𝑤⟩] ~Q )
4140eqeq2d 2208 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐴 = [⟨𝑧, 𝑤⟩] ~Q ))
42 nqnq0pi 7522 . . . . . . . . . . 11 ((𝑣N𝑢N) → [⟨𝑣, 𝑢⟩] ~Q0 = [⟨𝑣, 𝑢⟩] ~Q )
4342adantl 277 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → [⟨𝑣, 𝑢⟩] ~Q0 = [⟨𝑣, 𝑢⟩] ~Q )
4443eqeq2d 2208 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝐵 = [⟨𝑣, 𝑢⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q ))
4541, 44anbi12d 473 . . . . . . . 8 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q0 ) ↔ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
4645pm5.32i 454 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q0 )) ↔ (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
47 oveq12 5934 . . . . . . . 8 ((𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q0 ) → (𝐴 +Q0 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
4847adantl 277 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q0 )) → (𝐴 +Q0 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
4946, 48sylbir 135 . . . . . 6 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 +Q0 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
5038, 49eqtr4d 2232 . . . . 5 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵))
5150an4s 588 . . . 4 ((((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵))
5251exlimivv 1911 . . 3 (∃𝑣𝑢(((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵))
5352exlimivv 1911 . 2 (∃𝑧𝑤𝑣𝑢(((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵))
545, 53syl 14 1 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1506  wcel 2167  cop 3626  ωcom 4627  (class class class)co 5925   +o coa 6480   ·o comu 6481  [cec 6599  Ncnpi 7356   +N cpli 7357   ·N cmi 7358   ~Q ceq 7363  Qcnq 7364   +Q cplq 7366   ~Q0 ceq0 7370   +Q0 cplq0 7373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-plpq 7428  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-enq0 7508  df-nq0 7509  df-plq0 7511
This theorem is referenced by:  prarloclemlo  7578  prarloclemcalc  7586
  Copyright terms: Public domain W3C validator