| Step | Hyp | Ref
| Expression |
| 1 | | nqpi 7445 |
. . . 4
⊢ (𝐴 ∈ Q →
∃𝑧∃𝑤((𝑧 ∈ N ∧ 𝑤 ∈ N) ∧
𝐴 = [〈𝑧, 𝑤〉] ~Q
)) |
| 2 | | nqpi 7445 |
. . . 4
⊢ (𝐵 ∈ Q →
∃𝑣∃𝑢((𝑣 ∈ N ∧ 𝑢 ∈ N) ∧
𝐵 = [〈𝑣, 𝑢〉] ~Q
)) |
| 3 | 1, 2 | anim12i 338 |
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (∃𝑧∃𝑤((𝑧 ∈ N ∧ 𝑤 ∈ N) ∧
𝐴 = [〈𝑧, 𝑤〉] ~Q ) ∧
∃𝑣∃𝑢((𝑣 ∈ N ∧ 𝑢 ∈ N) ∧
𝐵 = [〈𝑣, 𝑢〉] ~Q
))) |
| 4 | | ee4anv 1953 |
. . 3
⊢
(∃𝑧∃𝑤∃𝑣∃𝑢(((𝑧 ∈ N ∧ 𝑤 ∈ N) ∧
𝐴 = [〈𝑧, 𝑤〉] ~Q ) ∧
((𝑣 ∈ N
∧ 𝑢 ∈
N) ∧ 𝐵 =
[〈𝑣, 𝑢〉]
~Q )) ↔ (∃𝑧∃𝑤((𝑧 ∈ N ∧ 𝑤 ∈ N) ∧
𝐴 = [〈𝑧, 𝑤〉] ~Q ) ∧
∃𝑣∃𝑢((𝑣 ∈ N ∧ 𝑢 ∈ N) ∧
𝐵 = [〈𝑣, 𝑢〉] ~Q
))) |
| 5 | 3, 4 | sylibr 134 |
. 2
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ ∃𝑧∃𝑤∃𝑣∃𝑢(((𝑧 ∈ N ∧ 𝑤 ∈ N) ∧
𝐴 = [〈𝑧, 𝑤〉] ~Q ) ∧
((𝑣 ∈ N
∧ 𝑢 ∈
N) ∧ 𝐵 =
[〈𝑣, 𝑢〉]
~Q ))) |
| 6 | | oveq12 5931 |
. . . . . . 7
⊢ ((𝐴 = [〈𝑧, 𝑤〉] ~Q ∧
𝐵 = [〈𝑣, 𝑢〉] ~Q ) →
(𝐴
+Q 𝐵) = ([〈𝑧, 𝑤〉] ~Q
+Q [〈𝑣, 𝑢〉] ~Q
)) |
| 7 | | mulclpi 7395 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ N ∧
𝑢 ∈ N)
→ (𝑧
·N 𝑢) ∈ N) |
| 8 | 7 | ad2ant2rl 511 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → (𝑧 ·N 𝑢) ∈
N) |
| 9 | | mulclpi 7395 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ N ∧
𝑣 ∈ N)
→ (𝑤
·N 𝑣) ∈ N) |
| 10 | 9 | ad2ant2lr 510 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → (𝑤 ·N 𝑣) ∈
N) |
| 11 | | addpiord 7383 |
. . . . . . . . . . . 12
⊢ (((𝑧
·N 𝑢) ∈ N ∧ (𝑤
·N 𝑣) ∈ N) → ((𝑧
·N 𝑢) +N (𝑤
·N 𝑣)) = ((𝑧 ·N 𝑢) +o (𝑤
·N 𝑣))) |
| 12 | 8, 10, 11 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → ((𝑧 ·N 𝑢) +N
(𝑤
·N 𝑣)) = ((𝑧 ·N 𝑢) +o (𝑤
·N 𝑣))) |
| 13 | | mulpiord 7384 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ N ∧
𝑢 ∈ N)
→ (𝑧
·N 𝑢) = (𝑧 ·o 𝑢)) |
| 14 | 13 | ad2ant2rl 511 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → (𝑧 ·N 𝑢) = (𝑧 ·o 𝑢)) |
| 15 | | mulpiord 7384 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ N ∧
𝑣 ∈ N)
→ (𝑤
·N 𝑣) = (𝑤 ·o 𝑣)) |
| 16 | 15 | ad2ant2lr 510 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → (𝑤 ·N 𝑣) = (𝑤 ·o 𝑣)) |
| 17 | 14, 16 | oveq12d 5940 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → ((𝑧 ·N 𝑢) +o (𝑤
·N 𝑣)) = ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))) |
| 18 | 12, 17 | eqtrd 2229 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → ((𝑧 ·N 𝑢) +N
(𝑤
·N 𝑣)) = ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))) |
| 19 | | mulpiord 7384 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ N ∧
𝑢 ∈ N)
→ (𝑤
·N 𝑢) = (𝑤 ·o 𝑢)) |
| 20 | 19 | ad2ant2l 508 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → (𝑤 ·N 𝑢) = (𝑤 ·o 𝑢)) |
| 21 | 18, 20 | opeq12d 3816 |
. . . . . . . . 9
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → 〈((𝑧 ·N 𝑢) +N
(𝑤
·N 𝑣)), (𝑤 ·N 𝑢)〉 = 〈((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)), (𝑤 ·o 𝑢)〉) |
| 22 | 21 | eceq1d 6628 |
. . . . . . . 8
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → [〈((𝑧 ·N 𝑢) +N
(𝑤
·N 𝑣)), (𝑤 ·N 𝑢)〉]
~Q0 = [〈((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)), (𝑤 ·o 𝑢)〉] ~Q0
) |
| 23 | | addpipqqs 7437 |
. . . . . . . . 9
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → ([〈𝑧, 𝑤〉] ~Q
+Q [〈𝑣, 𝑢〉] ~Q ) =
[〈((𝑧
·N 𝑢) +N (𝑤
·N 𝑣)), (𝑤 ·N 𝑢)〉]
~Q ) |
| 24 | | addclpi 7394 |
. . . . . . . . . . 11
⊢ (((𝑧
·N 𝑢) ∈ N ∧ (𝑤
·N 𝑣) ∈ N) → ((𝑧
·N 𝑢) +N (𝑤
·N 𝑣)) ∈ N) |
| 25 | 8, 10, 24 | syl2anc 411 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → ((𝑧 ·N 𝑢) +N
(𝑤
·N 𝑣)) ∈ N) |
| 26 | | mulclpi 7395 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ N ∧
𝑢 ∈ N)
→ (𝑤
·N 𝑢) ∈ N) |
| 27 | 26 | ad2ant2l 508 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → (𝑤 ·N 𝑢) ∈
N) |
| 28 | | nqnq0pi 7505 |
. . . . . . . . . 10
⊢ ((((𝑧
·N 𝑢) +N (𝑤
·N 𝑣)) ∈ N ∧ (𝑤
·N 𝑢) ∈ N) →
[〈((𝑧
·N 𝑢) +N (𝑤
·N 𝑣)), (𝑤 ·N 𝑢)〉]
~Q0 = [〈((𝑧 ·N 𝑢) +N
(𝑤
·N 𝑣)), (𝑤 ·N 𝑢)〉]
~Q ) |
| 29 | 25, 27, 28 | syl2anc 411 |
. . . . . . . . 9
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → [〈((𝑧 ·N 𝑢) +N
(𝑤
·N 𝑣)), (𝑤 ·N 𝑢)〉]
~Q0 = [〈((𝑧 ·N 𝑢) +N
(𝑤
·N 𝑣)), (𝑤 ·N 𝑢)〉]
~Q ) |
| 30 | 23, 29 | eqtr4d 2232 |
. . . . . . . 8
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → ([〈𝑧, 𝑤〉] ~Q
+Q [〈𝑣, 𝑢〉] ~Q ) =
[〈((𝑧
·N 𝑢) +N (𝑤
·N 𝑣)), (𝑤 ·N 𝑢)〉]
~Q0 ) |
| 31 | | pinn 7376 |
. . . . . . . . . 10
⊢ (𝑧 ∈ N →
𝑧 ∈
ω) |
| 32 | 31 | anim1i 340 |
. . . . . . . . 9
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) |
| 33 | | pinn 7376 |
. . . . . . . . . 10
⊢ (𝑣 ∈ N →
𝑣 ∈
ω) |
| 34 | 33 | anim1i 340 |
. . . . . . . . 9
⊢ ((𝑣 ∈ N ∧
𝑢 ∈ N)
→ (𝑣 ∈ ω
∧ 𝑢 ∈
N)) |
| 35 | | addnnnq0 7516 |
. . . . . . . . 9
⊢ (((𝑧 ∈ ω ∧ 𝑤 ∈ N) ∧
(𝑣 ∈ ω ∧
𝑢 ∈ N))
→ ([〈𝑧, 𝑤〉]
~Q0 +Q0 [〈𝑣, 𝑢〉] ~Q0 ) =
[〈((𝑧
·o 𝑢)
+o (𝑤
·o 𝑣)),
(𝑤 ·o
𝑢)〉]
~Q0 ) |
| 36 | 32, 34, 35 | syl2an 289 |
. . . . . . . 8
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → ([〈𝑧, 𝑤〉] ~Q0
+Q0 [〈𝑣, 𝑢〉] ~Q0 ) =
[〈((𝑧
·o 𝑢)
+o (𝑤
·o 𝑣)),
(𝑤 ·o
𝑢)〉]
~Q0 ) |
| 37 | 22, 30, 36 | 3eqtr4d 2239 |
. . . . . . 7
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → ([〈𝑧, 𝑤〉] ~Q
+Q [〈𝑣, 𝑢〉] ~Q ) =
([〈𝑧, 𝑤〉]
~Q0 +Q0 [〈𝑣, 𝑢〉] ~Q0
)) |
| 38 | 6, 37 | sylan9eqr 2251 |
. . . . . 6
⊢ ((((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) ∧ (𝐴 = [〈𝑧, 𝑤〉] ~Q ∧
𝐵 = [〈𝑣, 𝑢〉] ~Q )) →
(𝐴
+Q 𝐵) = ([〈𝑧, 𝑤〉] ~Q0
+Q0 [〈𝑣, 𝑢〉] ~Q0
)) |
| 39 | | nqnq0pi 7505 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ [〈𝑧, 𝑤〉]
~Q0 = [〈𝑧, 𝑤〉] ~Q
) |
| 40 | 39 | adantr 276 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → [〈𝑧, 𝑤〉] ~Q0 =
[〈𝑧, 𝑤〉]
~Q ) |
| 41 | 40 | eqeq2d 2208 |
. . . . . . . . 9
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → (𝐴 = [〈𝑧, 𝑤〉] ~Q0 ↔
𝐴 = [〈𝑧, 𝑤〉] ~Q
)) |
| 42 | | nqnq0pi 7505 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ N ∧
𝑢 ∈ N)
→ [〈𝑣, 𝑢〉]
~Q0 = [〈𝑣, 𝑢〉] ~Q
) |
| 43 | 42 | adantl 277 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → [〈𝑣, 𝑢〉] ~Q0 =
[〈𝑣, 𝑢〉]
~Q ) |
| 44 | 43 | eqeq2d 2208 |
. . . . . . . . 9
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → (𝐵 = [〈𝑣, 𝑢〉] ~Q0 ↔
𝐵 = [〈𝑣, 𝑢〉] ~Q
)) |
| 45 | 41, 44 | anbi12d 473 |
. . . . . . . 8
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → ((𝐴 = [〈𝑧, 𝑤〉] ~Q0 ∧
𝐵 = [〈𝑣, 𝑢〉] ~Q0 ) ↔
(𝐴 = [〈𝑧, 𝑤〉] ~Q ∧
𝐵 = [〈𝑣, 𝑢〉] ~Q
))) |
| 46 | 45 | pm5.32i 454 |
. . . . . . 7
⊢ ((((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) ∧ (𝐴 = [〈𝑧, 𝑤〉] ~Q0 ∧
𝐵 = [〈𝑣, 𝑢〉] ~Q0 ))
↔ (((𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) ∧
(𝐴 = [〈𝑧, 𝑤〉] ~Q ∧
𝐵 = [〈𝑣, 𝑢〉] ~Q
))) |
| 47 | | oveq12 5931 |
. . . . . . . 8
⊢ ((𝐴 = [〈𝑧, 𝑤〉] ~Q0 ∧
𝐵 = [〈𝑣, 𝑢〉] ~Q0 ) →
(𝐴
+Q0 𝐵) = ([〈𝑧, 𝑤〉] ~Q0
+Q0 [〈𝑣, 𝑢〉] ~Q0
)) |
| 48 | 47 | adantl 277 |
. . . . . . 7
⊢ ((((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) ∧ (𝐴 = [〈𝑧, 𝑤〉] ~Q0 ∧
𝐵 = [〈𝑣, 𝑢〉] ~Q0 ))
→ (𝐴
+Q0 𝐵) = ([〈𝑧, 𝑤〉] ~Q0
+Q0 [〈𝑣, 𝑢〉] ~Q0
)) |
| 49 | 46, 48 | sylbir 135 |
. . . . . 6
⊢ ((((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) ∧ (𝐴 = [〈𝑧, 𝑤〉] ~Q ∧
𝐵 = [〈𝑣, 𝑢〉] ~Q )) →
(𝐴
+Q0 𝐵) = ([〈𝑧, 𝑤〉] ~Q0
+Q0 [〈𝑣, 𝑢〉] ~Q0
)) |
| 50 | 38, 49 | eqtr4d 2232 |
. . . . 5
⊢ ((((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) ∧ (𝐴 = [〈𝑧, 𝑤〉] ~Q ∧
𝐵 = [〈𝑣, 𝑢〉] ~Q )) →
(𝐴
+Q 𝐵) = (𝐴 +Q0 𝐵)) |
| 51 | 50 | an4s 588 |
. . . 4
⊢ ((((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ 𝐴 = [〈𝑧, 𝑤〉] ~Q ) ∧
((𝑣 ∈ N
∧ 𝑢 ∈
N) ∧ 𝐵 =
[〈𝑣, 𝑢〉]
~Q )) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵)) |
| 52 | 51 | exlimivv 1911 |
. . 3
⊢
(∃𝑣∃𝑢(((𝑧 ∈ N ∧ 𝑤 ∈ N) ∧
𝐴 = [〈𝑧, 𝑤〉] ~Q ) ∧
((𝑣 ∈ N
∧ 𝑢 ∈
N) ∧ 𝐵 =
[〈𝑣, 𝑢〉]
~Q )) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵)) |
| 53 | 52 | exlimivv 1911 |
. 2
⊢
(∃𝑧∃𝑤∃𝑣∃𝑢(((𝑧 ∈ N ∧ 𝑤 ∈ N) ∧
𝐴 = [〈𝑧, 𝑤〉] ~Q ) ∧
((𝑣 ∈ N
∧ 𝑢 ∈
N) ∧ 𝐵 =
[〈𝑣, 𝑢〉]
~Q )) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵)) |
| 54 | 5, 53 | syl 14 |
1
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (𝐴
+Q 𝐵) = (𝐴 +Q0 𝐵)) |