ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliota GIF version

Theorem eliota 5259
Description: An element of an iota expression. (Contributed by Jim Kingdon, 22-Nov-2024.)
Assertion
Ref Expression
eliota (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴𝑦 ∧ ∀𝑥(𝜑𝑥 = 𝑦)))
Distinct variable groups:   𝜑,𝑦   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem eliota
StepHypRef Expression
1 dfiota2 5233 . . 3 (℩𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
21eleq2i 2272 . 2 (𝐴 ∈ (℩𝑥𝜑) ↔ 𝐴 {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)})
3 eluniab 3862 . 2 (𝐴 {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)} ↔ ∃𝑦(𝐴𝑦 ∧ ∀𝑥(𝜑𝑥 = 𝑦)))
42, 3bitri 184 1 (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴𝑦 ∧ ∀𝑥(𝜑𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1371  wex 1515  wcel 2176  {cab 2191   cuni 3850  cio 5230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-sn 3639  df-uni 3851  df-iota 5232
This theorem is referenced by:  eliotaeu  5260
  Copyright terms: Public domain W3C validator