| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eliota | GIF version | ||
| Description: An element of an iota expression. (Contributed by Jim Kingdon, 22-Nov-2024.) |
| Ref | Expression |
|---|---|
| eliota | ⊢ (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiota2 5220 | . . 3 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | |
| 2 | 1 | eleq2i 2263 | . 2 ⊢ (𝐴 ∈ (℩𝑥𝜑) ↔ 𝐴 ∈ ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)}) |
| 3 | eluniab 3851 | . 2 ⊢ (𝐴 ∈ ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃wex 1506 ∈ wcel 2167 {cab 2182 ∪ cuni 3839 ℩cio 5217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sn 3628 df-uni 3840 df-iota 5219 |
| This theorem is referenced by: eliotaeu 5247 |
| Copyright terms: Public domain | W3C validator |