ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliota GIF version

Theorem eliota 5306
Description: An element of an iota expression. (Contributed by Jim Kingdon, 22-Nov-2024.)
Assertion
Ref Expression
eliota (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴𝑦 ∧ ∀𝑥(𝜑𝑥 = 𝑦)))
Distinct variable groups:   𝜑,𝑦   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem eliota
StepHypRef Expression
1 dfiota2 5279 . . 3 (℩𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
21eleq2i 2296 . 2 (𝐴 ∈ (℩𝑥𝜑) ↔ 𝐴 {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)})
3 eluniab 3900 . 2 (𝐴 {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)} ↔ ∃𝑦(𝐴𝑦 ∧ ∀𝑥(𝜑𝑥 = 𝑦)))
42, 3bitri 184 1 (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴𝑦 ∧ ∀𝑥(𝜑𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1393  wex 1538  wcel 2200  {cab 2215   cuni 3888  cio 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sn 3672  df-uni 3889  df-iota 5278
This theorem is referenced by:  eliotaeu  5307
  Copyright terms: Public domain W3C validator