![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eliota | GIF version |
Description: An element of an iota expression. (Contributed by Jim Kingdon, 22-Nov-2024.) |
Ref | Expression |
---|---|
eliota | ⊢ (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiota2 5179 | . . 3 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | |
2 | 1 | eleq2i 2244 | . 2 ⊢ (𝐴 ∈ (℩𝑥𝜑) ↔ 𝐴 ∈ ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)}) |
3 | eluniab 3821 | . 2 ⊢ (𝐴 ∈ ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | |
4 | 2, 3 | bitri 184 | 1 ⊢ (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∀wal 1351 ∃wex 1492 ∈ wcel 2148 {cab 2163 ∪ cuni 3809 ℩cio 5176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2739 df-sn 3598 df-uni 3810 df-iota 5178 |
This theorem is referenced by: eliotaeu 5205 |
Copyright terms: Public domain | W3C validator |