ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliota GIF version

Theorem eliota 5278
Description: An element of an iota expression. (Contributed by Jim Kingdon, 22-Nov-2024.)
Assertion
Ref Expression
eliota (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴𝑦 ∧ ∀𝑥(𝜑𝑥 = 𝑦)))
Distinct variable groups:   𝜑,𝑦   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem eliota
StepHypRef Expression
1 dfiota2 5252 . . 3 (℩𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
21eleq2i 2274 . 2 (𝐴 ∈ (℩𝑥𝜑) ↔ 𝐴 {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)})
3 eluniab 3876 . 2 (𝐴 {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)} ↔ ∃𝑦(𝐴𝑦 ∧ ∀𝑥(𝜑𝑥 = 𝑦)))
42, 3bitri 184 1 (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴𝑦 ∧ ∀𝑥(𝜑𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1371  wex 1516  wcel 2178  {cab 2193   cuni 3864  cio 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-sn 3649  df-uni 3865  df-iota 5251
This theorem is referenced by:  eliotaeu  5279
  Copyright terms: Public domain W3C validator