| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eliota | GIF version | ||
| Description: An element of an iota expression. (Contributed by Jim Kingdon, 22-Nov-2024.) |
| Ref | Expression |
|---|---|
| eliota | ⊢ (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiota2 5233 | . . 3 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | |
| 2 | 1 | eleq2i 2272 | . 2 ⊢ (𝐴 ∈ (℩𝑥𝜑) ↔ 𝐴 ∈ ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)}) |
| 3 | eluniab 3862 | . 2 ⊢ (𝐴 ∈ ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∀wal 1371 ∃wex 1515 ∈ wcel 2176 {cab 2191 ∪ cuni 3850 ℩cio 5230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-sn 3639 df-uni 3851 df-iota 5232 |
| This theorem is referenced by: eliotaeu 5260 |
| Copyright terms: Public domain | W3C validator |