ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluniab GIF version

Theorem eluniab 3851
Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
eluniab (𝐴 {𝑥𝜑} ↔ ∃𝑥(𝐴𝑥𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eluniab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eluni 3842 . 2 (𝐴 {𝑥𝜑} ↔ ∃𝑦(𝐴𝑦𝑦 ∈ {𝑥𝜑}))
2 nfv 1542 . . . 4 𝑥 𝐴𝑦
3 nfsab1 2186 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
42, 3nfan 1579 . . 3 𝑥(𝐴𝑦𝑦 ∈ {𝑥𝜑})
5 nfv 1542 . . 3 𝑦(𝐴𝑥𝜑)
6 eleq2 2260 . . . 4 (𝑦 = 𝑥 → (𝐴𝑦𝐴𝑥))
7 eleq1 2259 . . . . 5 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {𝑥𝜑}))
8 abid 2184 . . . . 5 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
97, 8bitrdi 196 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝜑))
106, 9anbi12d 473 . . 3 (𝑦 = 𝑥 → ((𝐴𝑦𝑦 ∈ {𝑥𝜑}) ↔ (𝐴𝑥𝜑)))
114, 5, 10cbvex 1770 . 2 (∃𝑦(𝐴𝑦𝑦 ∈ {𝑥𝜑}) ↔ ∃𝑥(𝐴𝑥𝜑))
121, 11bitri 184 1 (𝐴 {𝑥𝜑} ↔ ∃𝑥(𝐴𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1506  wcel 2167  {cab 2182   cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-uni 3840
This theorem is referenced by:  elunirab  3852  dfiun2g  3948  inuni  4188  snnex  4483  eliota  5246  elfv  5556  unielxp  6232  tfrlem9  6377  tfr0dm  6380  metrest  14742
  Copyright terms: Public domain W3C validator