ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluniab GIF version

Theorem eluniab 3808
Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
eluniab (𝐴 {𝑥𝜑} ↔ ∃𝑥(𝐴𝑥𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eluniab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eluni 3799 . 2 (𝐴 {𝑥𝜑} ↔ ∃𝑦(𝐴𝑦𝑦 ∈ {𝑥𝜑}))
2 nfv 1521 . . . 4 𝑥 𝐴𝑦
3 nfsab1 2160 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
42, 3nfan 1558 . . 3 𝑥(𝐴𝑦𝑦 ∈ {𝑥𝜑})
5 nfv 1521 . . 3 𝑦(𝐴𝑥𝜑)
6 eleq2 2234 . . . 4 (𝑦 = 𝑥 → (𝐴𝑦𝐴𝑥))
7 eleq1 2233 . . . . 5 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {𝑥𝜑}))
8 abid 2158 . . . . 5 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
97, 8bitrdi 195 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝜑))
106, 9anbi12d 470 . . 3 (𝑦 = 𝑥 → ((𝐴𝑦𝑦 ∈ {𝑥𝜑}) ↔ (𝐴𝑥𝜑)))
114, 5, 10cbvex 1749 . 2 (∃𝑦(𝐴𝑦𝑦 ∈ {𝑥𝜑}) ↔ ∃𝑥(𝐴𝑥𝜑))
121, 11bitri 183 1 (𝐴 {𝑥𝜑} ↔ ∃𝑥(𝐴𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wex 1485  wcel 2141  {cab 2156   cuni 3796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-uni 3797
This theorem is referenced by:  elunirab  3809  dfiun2g  3905  inuni  4141  snnex  4433  eliota  5186  elfv  5494  unielxp  6153  tfrlem9  6298  tfr0dm  6301  metrest  13300
  Copyright terms: Public domain W3C validator