ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluniab GIF version

Theorem eluniab 3780
Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
eluniab (𝐴 {𝑥𝜑} ↔ ∃𝑥(𝐴𝑥𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eluniab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eluni 3771 . 2 (𝐴 {𝑥𝜑} ↔ ∃𝑦(𝐴𝑦𝑦 ∈ {𝑥𝜑}))
2 nfv 1505 . . . 4 𝑥 𝐴𝑦
3 nfsab1 2144 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
42, 3nfan 1542 . . 3 𝑥(𝐴𝑦𝑦 ∈ {𝑥𝜑})
5 nfv 1505 . . 3 𝑦(𝐴𝑥𝜑)
6 eleq2 2218 . . . 4 (𝑦 = 𝑥 → (𝐴𝑦𝐴𝑥))
7 eleq1 2217 . . . . 5 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {𝑥𝜑}))
8 abid 2142 . . . . 5 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
97, 8bitrdi 195 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝜑))
106, 9anbi12d 465 . . 3 (𝑦 = 𝑥 → ((𝐴𝑦𝑦 ∈ {𝑥𝜑}) ↔ (𝐴𝑥𝜑)))
114, 5, 10cbvex 1733 . 2 (∃𝑦(𝐴𝑦𝑦 ∈ {𝑥𝜑}) ↔ ∃𝑥(𝐴𝑥𝜑))
121, 11bitri 183 1 (𝐴 {𝑥𝜑} ↔ ∃𝑥(𝐴𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wex 1469  wcel 2125  {cab 2140   cuni 3768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-uni 3769
This theorem is referenced by:  elunirab  3781  dfiun2g  3877  inuni  4112  snnex  4402  elfv  5459  unielxp  6112  tfrlem9  6256  tfr0dm  6259  metrest  12853
  Copyright terms: Public domain W3C validator