| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elab2g | GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab2g.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2g.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2273 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| 3 | elab2g.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | elabg 2920 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 5 | 2, 4 | bitrid 192 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 {cab 2192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 |
| This theorem is referenced by: elab2 2922 elab4g 2923 eldif 3176 elun 3315 elin 3357 elsng 3649 elprg 3654 eluni 3855 eliun 3933 eliin 3934 elopab 4308 elong 4424 opeliunxp 4734 elrn2g 4872 eldmg 4878 elrnmpt 4932 elrnmpt1 4934 elimag 5031 elrnmpog 6065 eloprabi 6289 tfrlem3ag 6402 tfr1onlem3ag 6430 tfrcllemsucaccv 6447 elqsg 6679 elixp2 6796 isomni 7245 ismkv 7262 iswomni 7274 isacnm 7322 1idprl 7710 1idpru 7711 recexprlemell 7742 recexprlemelu 7743 mertenslemub 11889 mertenslemi1 11890 mertenslem2 11891 4sqexercise1 12765 4sqexercise2 12766 4sqlemsdc 12767 ismgm 13233 istopg 14515 isbasisg 14560 2sqlem8 15644 2sqlem9 15645 isuhgrm 15711 isushgrm 15712 |
| Copyright terms: Public domain | W3C validator |