Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elab2g | GIF version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
elab2g.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
elab2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2g.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
2 | 1 | eleq2i 2233 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) |
3 | elab2g.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 3 | elabg 2872 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
5 | 2, 4 | syl5bb 191 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 {cab 2151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: elab2 2874 elab4g 2875 eldif 3125 elun 3263 elin 3305 elsng 3591 elprg 3596 eluni 3792 eliun 3870 eliin 3871 elopab 4236 elong 4351 opeliunxp 4659 elrn2g 4794 eldmg 4799 elrnmpt 4853 elrnmpt1 4855 elimag 4950 elrnmpog 5954 eloprabi 6164 tfrlem3ag 6277 tfr1onlem3ag 6305 tfrcllemsucaccv 6322 elqsg 6551 elixp2 6668 isomni 7100 ismkv 7117 iswomni 7129 1idprl 7531 1idpru 7532 recexprlemell 7563 recexprlemelu 7564 mertenslemub 11475 mertenslemi1 11476 mertenslem2 11477 ismgm 12588 istopg 12637 isbasisg 12682 2sqlem8 13599 2sqlem9 13600 |
Copyright terms: Public domain | W3C validator |