ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab2g GIF version

Theorem elab2g 2921
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.)
Hypotheses
Ref Expression
elab2g.1 (𝑥 = 𝐴 → (𝜑𝜓))
elab2g.2 𝐵 = {𝑥𝜑}
Assertion
Ref Expression
elab2g (𝐴𝑉 → (𝐴𝐵𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem elab2g
StepHypRef Expression
1 elab2g.2 . . 3 𝐵 = {𝑥𝜑}
21eleq2i 2273 . 2 (𝐴𝐵𝐴 ∈ {𝑥𝜑})
3 elab2g.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
43elabg 2920 . 2 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
52, 4bitrid 192 1 (𝐴𝑉 → (𝐴𝐵𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2177  {cab 2192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775
This theorem is referenced by:  elab2  2922  elab4g  2923  eldif  3176  elun  3315  elin  3357  elsng  3649  elprg  3654  eluni  3855  eliun  3933  eliin  3934  elopab  4308  elong  4424  opeliunxp  4734  elrn2g  4872  eldmg  4878  elrnmpt  4932  elrnmpt1  4934  elimag  5031  elrnmpog  6065  eloprabi  6289  tfrlem3ag  6402  tfr1onlem3ag  6430  tfrcllemsucaccv  6447  elqsg  6679  elixp2  6796  isomni  7245  ismkv  7262  iswomni  7274  isacnm  7322  1idprl  7710  1idpru  7711  recexprlemell  7742  recexprlemelu  7743  mertenslemub  11889  mertenslemi1  11890  mertenslem2  11891  4sqexercise1  12765  4sqexercise2  12766  4sqlemsdc  12767  ismgm  13233  istopg  14515  isbasisg  14560  2sqlem8  15644  2sqlem9  15645  isuhgrm  15711  isushgrm  15712
  Copyright terms: Public domain W3C validator