ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab2g GIF version

Theorem elab2g 2911
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.)
Hypotheses
Ref Expression
elab2g.1 (𝑥 = 𝐴 → (𝜑𝜓))
elab2g.2 𝐵 = {𝑥𝜑}
Assertion
Ref Expression
elab2g (𝐴𝑉 → (𝐴𝐵𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem elab2g
StepHypRef Expression
1 elab2g.2 . . 3 𝐵 = {𝑥𝜑}
21eleq2i 2263 . 2 (𝐴𝐵𝐴 ∈ {𝑥𝜑})
3 elab2g.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
43elabg 2910 . 2 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
52, 4bitrid 192 1 (𝐴𝑉 → (𝐴𝐵𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  {cab 2182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765
This theorem is referenced by:  elab2  2912  elab4g  2913  eldif  3166  elun  3305  elin  3347  elsng  3638  elprg  3643  eluni  3843  eliun  3921  eliin  3922  elopab  4293  elong  4409  opeliunxp  4719  elrn2g  4857  eldmg  4862  elrnmpt  4916  elrnmpt1  4918  elimag  5014  elrnmpog  6039  eloprabi  6258  tfrlem3ag  6371  tfr1onlem3ag  6399  tfrcllemsucaccv  6416  elqsg  6648  elixp2  6765  isomni  7206  ismkv  7223  iswomni  7235  1idprl  7662  1idpru  7663  recexprlemell  7694  recexprlemelu  7695  mertenslemub  11704  mertenslemi1  11705  mertenslem2  11706  4sqexercise1  12580  4sqexercise2  12581  4sqlemsdc  12582  ismgm  13047  istopg  14282  isbasisg  14327  2sqlem8  15411  2sqlem9  15412
  Copyright terms: Public domain W3C validator