| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elab2g | GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab2g.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2g.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2296 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| 3 | elab2g.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | elabg 2949 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 5 | 2, 4 | bitrid 192 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {cab 2215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 |
| This theorem is referenced by: elab2 2951 elab4g 2952 eldif 3206 elun 3345 elin 3387 elif 3614 elsng 3681 elprg 3686 eluni 3891 eliun 3969 eliin 3970 elopab 4346 elong 4464 opeliunxp 4774 elrn2g 4912 eldmg 4918 elrnmpt 4973 elrnmpt1 4975 elimag 5072 elrnmpog 6123 eloprabi 6348 tfrlem3ag 6461 tfr1onlem3ag 6489 tfrcllemsucaccv 6506 elqsg 6740 elixp2 6857 isomni 7311 ismkv 7328 iswomni 7340 isacnm 7393 1idprl 7785 1idpru 7786 recexprlemell 7817 recexprlemelu 7818 mertenslemub 12053 mertenslemi1 12054 mertenslem2 12055 4sqexercise1 12929 4sqexercise2 12930 4sqlemsdc 12931 ismgm 13398 istopg 14681 isbasisg 14726 2sqlem8 15810 2sqlem9 15811 isuhgrm 15879 isushgrm 15880 isupgren 15903 isumgren 15913 isuspgren 15963 isusgren 15964 |
| Copyright terms: Public domain | W3C validator |