| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elab2g | GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab2g.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2g.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2263 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| 3 | elab2g.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | elabg 2910 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 5 | 2, 4 | bitrid 192 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {cab 2182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
| This theorem is referenced by: elab2 2912 elab4g 2913 eldif 3166 elun 3305 elin 3347 elsng 3638 elprg 3643 eluni 3843 eliun 3921 eliin 3922 elopab 4293 elong 4409 opeliunxp 4719 elrn2g 4857 eldmg 4862 elrnmpt 4916 elrnmpt1 4918 elimag 5014 elrnmpog 6039 eloprabi 6258 tfrlem3ag 6371 tfr1onlem3ag 6399 tfrcllemsucaccv 6416 elqsg 6648 elixp2 6765 isomni 7206 ismkv 7223 iswomni 7235 1idprl 7662 1idpru 7663 recexprlemell 7694 recexprlemelu 7695 mertenslemub 11704 mertenslemi1 11705 mertenslem2 11706 4sqexercise1 12580 4sqexercise2 12581 4sqlemsdc 12582 ismgm 13047 istopg 14282 isbasisg 14327 2sqlem8 15411 2sqlem9 15412 |
| Copyright terms: Public domain | W3C validator |