ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab2g GIF version

Theorem elab2g 2907
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.)
Hypotheses
Ref Expression
elab2g.1 (𝑥 = 𝐴 → (𝜑𝜓))
elab2g.2 𝐵 = {𝑥𝜑}
Assertion
Ref Expression
elab2g (𝐴𝑉 → (𝐴𝐵𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem elab2g
StepHypRef Expression
1 elab2g.2 . . 3 𝐵 = {𝑥𝜑}
21eleq2i 2260 . 2 (𝐴𝐵𝐴 ∈ {𝑥𝜑})
3 elab2g.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
43elabg 2906 . 2 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
52, 4bitrid 192 1 (𝐴𝑉 → (𝐴𝐵𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  {cab 2179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762
This theorem is referenced by:  elab2  2908  elab4g  2909  eldif  3162  elun  3300  elin  3342  elsng  3633  elprg  3638  eluni  3838  eliun  3916  eliin  3917  elopab  4288  elong  4404  opeliunxp  4714  elrn2g  4852  eldmg  4857  elrnmpt  4911  elrnmpt1  4913  elimag  5009  elrnmpog  6031  eloprabi  6249  tfrlem3ag  6362  tfr1onlem3ag  6390  tfrcllemsucaccv  6407  elqsg  6639  elixp2  6756  isomni  7195  ismkv  7212  iswomni  7224  1idprl  7650  1idpru  7651  recexprlemell  7682  recexprlemelu  7683  mertenslemub  11677  mertenslemi1  11678  mertenslem2  11679  4sqexercise1  12536  4sqexercise2  12537  4sqlemsdc  12538  ismgm  12940  istopg  14167  isbasisg  14212  2sqlem8  15210  2sqlem9  15211
  Copyright terms: Public domain W3C validator