| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elab2g | GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab2g.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2g.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2276 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| 3 | elab2g.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | elabg 2929 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 5 | 2, 4 | bitrid 192 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 ∈ wcel 2180 {cab 2195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 |
| This theorem is referenced by: elab2 2931 elab4g 2932 eldif 3186 elun 3325 elin 3367 elif 3594 elsng 3661 elprg 3666 eluni 3870 eliun 3948 eliin 3949 elopab 4325 elong 4441 opeliunxp 4751 elrn2g 4889 eldmg 4895 elrnmpt 4949 elrnmpt1 4951 elimag 5048 elrnmpog 6088 eloprabi 6312 tfrlem3ag 6425 tfr1onlem3ag 6453 tfrcllemsucaccv 6470 elqsg 6702 elixp2 6819 isomni 7271 ismkv 7288 iswomni 7300 isacnm 7353 1idprl 7745 1idpru 7746 recexprlemell 7777 recexprlemelu 7778 mertenslemub 12011 mertenslemi1 12012 mertenslem2 12013 4sqexercise1 12887 4sqexercise2 12888 4sqlemsdc 12889 ismgm 13356 istopg 14638 isbasisg 14683 2sqlem8 15767 2sqlem9 15768 isuhgrm 15836 isushgrm 15837 isupgren 15860 isumgren 15870 isuspgren 15920 isusgren 15921 |
| Copyright terms: Public domain | W3C validator |