ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab2g GIF version

Theorem elab2g 2908
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.)
Hypotheses
Ref Expression
elab2g.1 (𝑥 = 𝐴 → (𝜑𝜓))
elab2g.2 𝐵 = {𝑥𝜑}
Assertion
Ref Expression
elab2g (𝐴𝑉 → (𝐴𝐵𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem elab2g
StepHypRef Expression
1 elab2g.2 . . 3 𝐵 = {𝑥𝜑}
21eleq2i 2260 . 2 (𝐴𝐵𝐴 ∈ {𝑥𝜑})
3 elab2g.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
43elabg 2907 . 2 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
52, 4bitrid 192 1 (𝐴𝑉 → (𝐴𝐵𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  {cab 2179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762
This theorem is referenced by:  elab2  2909  elab4g  2910  eldif  3163  elun  3301  elin  3343  elsng  3634  elprg  3639  eluni  3839  eliun  3917  eliin  3918  elopab  4289  elong  4405  opeliunxp  4715  elrn2g  4853  eldmg  4858  elrnmpt  4912  elrnmpt1  4914  elimag  5010  elrnmpog  6032  eloprabi  6251  tfrlem3ag  6364  tfr1onlem3ag  6392  tfrcllemsucaccv  6409  elqsg  6641  elixp2  6758  isomni  7197  ismkv  7214  iswomni  7226  1idprl  7652  1idpru  7653  recexprlemell  7684  recexprlemelu  7685  mertenslemub  11680  mertenslemi1  11681  mertenslem2  11682  4sqexercise1  12539  4sqexercise2  12540  4sqlemsdc  12541  ismgm  12943  istopg  14178  isbasisg  14223  2sqlem8  15280  2sqlem9  15281
  Copyright terms: Public domain W3C validator