ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab2g GIF version

Theorem elab2g 2899
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.)
Hypotheses
Ref Expression
elab2g.1 (𝑥 = 𝐴 → (𝜑𝜓))
elab2g.2 𝐵 = {𝑥𝜑}
Assertion
Ref Expression
elab2g (𝐴𝑉 → (𝐴𝐵𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem elab2g
StepHypRef Expression
1 elab2g.2 . . 3 𝐵 = {𝑥𝜑}
21eleq2i 2256 . 2 (𝐴𝐵𝐴 ∈ {𝑥𝜑})
3 elab2g.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
43elabg 2898 . 2 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
52, 4bitrid 192 1 (𝐴𝑉 → (𝐴𝐵𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2160  {cab 2175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754
This theorem is referenced by:  elab2  2900  elab4g  2901  eldif  3153  elun  3291  elin  3333  elsng  3622  elprg  3627  eluni  3827  eliun  3905  eliin  3906  elopab  4276  elong  4391  opeliunxp  4699  elrn2g  4835  eldmg  4840  elrnmpt  4894  elrnmpt1  4896  elimag  4992  elrnmpog  6010  eloprabi  6222  tfrlem3ag  6335  tfr1onlem3ag  6363  tfrcllemsucaccv  6380  elqsg  6612  elixp2  6729  isomni  7165  ismkv  7182  iswomni  7194  1idprl  7620  1idpru  7621  recexprlemell  7652  recexprlemelu  7653  mertenslemub  11577  mertenslemi1  11578  mertenslem2  11579  4sqexercise1  12433  4sqexercise2  12434  4sqlemsdc  12435  ismgm  12836  istopg  13976  isbasisg  14021  2sqlem8  14948  2sqlem9  14949
  Copyright terms: Public domain W3C validator