ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab2g GIF version

Theorem elab2g 2950
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.)
Hypotheses
Ref Expression
elab2g.1 (𝑥 = 𝐴 → (𝜑𝜓))
elab2g.2 𝐵 = {𝑥𝜑}
Assertion
Ref Expression
elab2g (𝐴𝑉 → (𝐴𝐵𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem elab2g
StepHypRef Expression
1 elab2g.2 . . 3 𝐵 = {𝑥𝜑}
21eleq2i 2296 . 2 (𝐴𝐵𝐴 ∈ {𝑥𝜑})
3 elab2g.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
43elabg 2949 . 2 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
52, 4bitrid 192 1 (𝐴𝑉 → (𝐴𝐵𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wcel 2200  {cab 2215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801
This theorem is referenced by:  elab2  2951  elab4g  2952  eldif  3206  elun  3345  elin  3387  elif  3614  elsng  3681  elprg  3686  eluni  3891  eliun  3969  eliin  3970  elopab  4346  elong  4464  opeliunxp  4774  elrn2g  4912  eldmg  4918  elrnmpt  4973  elrnmpt1  4975  elimag  5072  elrnmpog  6123  eloprabi  6348  tfrlem3ag  6461  tfr1onlem3ag  6489  tfrcllemsucaccv  6506  elqsg  6740  elixp2  6857  isomni  7311  ismkv  7328  iswomni  7340  isacnm  7393  1idprl  7785  1idpru  7786  recexprlemell  7817  recexprlemelu  7818  mertenslemub  12053  mertenslemi1  12054  mertenslem2  12055  4sqexercise1  12929  4sqexercise2  12930  4sqlemsdc  12931  ismgm  13398  istopg  14681  isbasisg  14726  2sqlem8  15810  2sqlem9  15811  isuhgrm  15879  isushgrm  15880  isupgren  15903  isumgren  15913  isuspgren  15963  isusgren  15964
  Copyright terms: Public domain W3C validator