| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecelqsg | GIF version | ||
| Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ecelqsg | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . 3 ⊢ [𝐵]𝑅 = [𝐵]𝑅 | |
| 2 | eceq1 6667 | . . . . 5 ⊢ (𝑥 = 𝐵 → [𝑥]𝑅 = [𝐵]𝑅) | |
| 3 | 2 | eqeq2d 2218 | . . . 4 ⊢ (𝑥 = 𝐵 → ([𝐵]𝑅 = [𝑥]𝑅 ↔ [𝐵]𝑅 = [𝐵]𝑅)) |
| 4 | 3 | rspcev 2881 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ [𝐵]𝑅 = [𝐵]𝑅) → ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅) |
| 5 | 1, 4 | mpan2 425 | . 2 ⊢ (𝐵 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅) |
| 6 | ecexg 6636 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → [𝐵]𝑅 ∈ V) | |
| 7 | elqsg 6684 | . . . 4 ⊢ ([𝐵]𝑅 ∈ V → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅)) | |
| 8 | 6, 7 | syl 14 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅)) |
| 9 | 8 | biimpar 297 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
| 10 | 5, 9 | sylan2 286 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 Vcvv 2773 [cec 6630 / cqs 6631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-xp 4688 df-cnv 4690 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-ec 6634 df-qs 6638 |
| This theorem is referenced by: ecelqsi 6688 qliftlem 6712 eroprf 6727 quseccl0g 13637 |
| Copyright terms: Public domain | W3C validator |