ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecelqsg GIF version

Theorem ecelqsg 6725
Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecelqsg ((𝑅𝑉𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))

Proof of Theorem ecelqsg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3 [𝐵]𝑅 = [𝐵]𝑅
2 eceq1 6705 . . . . 5 (𝑥 = 𝐵 → [𝑥]𝑅 = [𝐵]𝑅)
32eqeq2d 2241 . . . 4 (𝑥 = 𝐵 → ([𝐵]𝑅 = [𝑥]𝑅 ↔ [𝐵]𝑅 = [𝐵]𝑅))
43rspcev 2907 . . 3 ((𝐵𝐴 ∧ [𝐵]𝑅 = [𝐵]𝑅) → ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅)
51, 4mpan2 425 . 2 (𝐵𝐴 → ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅)
6 ecexg 6674 . . . 4 (𝑅𝑉 → [𝐵]𝑅 ∈ V)
7 elqsg 6722 . . . 4 ([𝐵]𝑅 ∈ V → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅))
86, 7syl 14 . . 3 (𝑅𝑉 → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅))
98biimpar 297 . 2 ((𝑅𝑉 ∧ ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
105, 9sylan2 286 1 ((𝑅𝑉𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wrex 2509  Vcvv 2799  [cec 6668   / cqs 6669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4722  df-cnv 4724  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-ec 6672  df-qs 6676
This theorem is referenced by:  ecelqsi  6726  qliftlem  6750  eroprf  6765  quseccl0g  13754
  Copyright terms: Public domain W3C validator