ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqelssd GIF version

Theorem eqelssd 3176
Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
eqelssd.1 (𝜑𝐴𝐵)
eqelssd.2 ((𝜑𝑥𝐵) → 𝑥𝐴)
Assertion
Ref Expression
eqelssd (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem eqelssd
StepHypRef Expression
1 eqelssd.1 . 2 (𝜑𝐴𝐵)
2 eqelssd.2 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐴)
32ex 115 . . 3 (𝜑 → (𝑥𝐵𝑥𝐴))
43ssrdv 3163 . 2 (𝜑𝐵𝐴)
51, 4eqssd 3174 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wss 3131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3137  df-ss 3144
This theorem is referenced by:  fiuni  6980  ennnfonelemrn  12423  ennnfonelemdm  12424  unirnblps  14062  unirnbl  14063  dvidlemap  14300  dviaddf  14309  dvimulf  14310  dvcj  14313  dvrecap  14317
  Copyright terms: Public domain W3C validator