![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqelssd | GIF version |
Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.) |
Ref | Expression |
---|---|
eqelssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
eqelssd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
eqelssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqelssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | eqelssd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) | |
3 | 2 | ex 115 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) |
4 | 3 | ssrdv 3176 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
5 | 1, 4 | eqssd 3187 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ⊆ wss 3144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-in 3150 df-ss 3157 |
This theorem is referenced by: fiuni 7006 ennnfonelemrn 12469 ennnfonelemdm 12470 unirnblps 14374 unirnbl 14375 dvidlemap 14612 dviaddf 14621 dvimulf 14622 dvcj 14625 dvrecap 14629 |
Copyright terms: Public domain | W3C validator |