Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > clelsb1 | GIF version |
Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2153). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
clelsb1 | ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1526 | . . 3 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐴 | |
2 | 1 | sbco2 1963 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑦 / 𝑤]𝑤 ∈ 𝐴) |
3 | nfv 1526 | . . . 4 ⊢ Ⅎ𝑤 𝑥 ∈ 𝐴 | |
4 | eleq1 2238 | . . . 4 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
5 | 3, 4 | sbie 1789 | . . 3 ⊢ ([𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
6 | 5 | sbbii 1763 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝐴) |
7 | nfv 1526 | . . 3 ⊢ Ⅎ𝑤 𝑦 ∈ 𝐴 | |
8 | eleq1 2238 | . . 3 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
9 | 7, 8 | sbie 1789 | . 2 ⊢ ([𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
10 | 2, 6, 9 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 [wsb 1760 ∈ wcel 2146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-cleq 2168 df-clel 2171 |
This theorem is referenced by: hblem 2283 nfraldya 2510 nfrexdya 2511 cbvreu 2699 sbcel1v 3023 rmo3 3052 setindel 4531 elirr 4534 en2lp 4547 zfregfr 4567 tfi 4575 bdcriota 14175 |
Copyright terms: Public domain | W3C validator |