ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clelsb1 GIF version

Theorem clelsb1 2275
Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2148). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
clelsb1 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem clelsb1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1521 . . 3 𝑥 𝑤𝐴
21sbco2 1958 . 2 ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤𝐴 ↔ [𝑦 / 𝑤]𝑤𝐴)
3 nfv 1521 . . . 4 𝑤 𝑥𝐴
4 eleq1 2233 . . . 4 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
53, 4sbie 1784 . . 3 ([𝑥 / 𝑤]𝑤𝐴𝑥𝐴)
65sbbii 1758 . 2 ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤𝐴 ↔ [𝑦 / 𝑥]𝑥𝐴)
7 nfv 1521 . . 3 𝑤 𝑦𝐴
8 eleq1 2233 . . 3 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
97, 8sbie 1784 . 2 ([𝑦 / 𝑤]𝑤𝐴𝑦𝐴)
102, 6, 93bitr3i 209 1 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104  [wsb 1755  wcel 2141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-cleq 2163  df-clel 2166
This theorem is referenced by:  hblem  2278  nfraldya  2505  nfrexdya  2506  cbvreu  2694  sbcel1v  3017  rmo3  3046  setindel  4522  elirr  4525  en2lp  4538  zfregfr  4558  tfi  4566  bdcriota  13918
  Copyright terms: Public domain W3C validator