ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clelsb1 GIF version

Theorem clelsb1 2314
Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2187). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
clelsb1 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem clelsb1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1554 . . 3 𝑥 𝑤𝐴
21sbco2 1996 . 2 ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤𝐴 ↔ [𝑦 / 𝑤]𝑤𝐴)
3 nfv 1554 . . . 4 𝑤 𝑥𝐴
4 eleq1 2272 . . . 4 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
53, 4sbie 1817 . . 3 ([𝑥 / 𝑤]𝑤𝐴𝑥𝐴)
65sbbii 1791 . 2 ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤𝐴 ↔ [𝑦 / 𝑥]𝑥𝐴)
7 nfv 1554 . . 3 𝑤 𝑦𝐴
8 eleq1 2272 . . 3 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
97, 8sbie 1817 . 2 ([𝑦 / 𝑤]𝑤𝐴𝑦𝐴)
102, 6, 93bitr3i 210 1 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1788  wcel 2180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-cleq 2202  df-clel 2205
This theorem is referenced by:  hblem  2317  eqabdv  2338  nfraldya  2545  nfrexdya  2546  cbvreu  2743  sbcel1v  3071  rmo3  3101  setindel  4607  elirr  4610  en2lp  4623  zfregfr  4643  tfi  4651  bdcriota  16156
  Copyright terms: Public domain W3C validator