| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clelsb1 | GIF version | ||
| Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2187). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| clelsb1 | ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1554 | . . 3 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐴 | |
| 2 | 1 | sbco2 1996 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑦 / 𝑤]𝑤 ∈ 𝐴) |
| 3 | nfv 1554 | . . . 4 ⊢ Ⅎ𝑤 𝑥 ∈ 𝐴 | |
| 4 | eleq1 2272 | . . . 4 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | sbie 1817 | . . 3 ⊢ ([𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
| 6 | 5 | sbbii 1791 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝐴) |
| 7 | nfv 1554 | . . 3 ⊢ Ⅎ𝑤 𝑦 ∈ 𝐴 | |
| 8 | eleq1 2272 | . . 3 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 9 | 7, 8 | sbie 1817 | . 2 ⊢ ([𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| 10 | 2, 6, 9 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1788 ∈ wcel 2180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-cleq 2202 df-clel 2205 |
| This theorem is referenced by: hblem 2317 eqabdv 2338 nfraldya 2545 nfrexdya 2546 cbvreu 2743 sbcel1v 3071 rmo3 3101 setindel 4607 elirr 4610 en2lp 4623 zfregfr 4643 tfi 4651 bdcriota 16156 |
| Copyright terms: Public domain | W3C validator |