| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > preqsn | GIF version | ||
| Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) | 
| Ref | Expression | 
|---|---|
| preqsn.1 | ⊢ 𝐴 ∈ V | 
| preqsn.2 | ⊢ 𝐵 ∈ V | 
| preqsn.3 | ⊢ 𝐶 ∈ V | 
| Ref | Expression | 
|---|---|
| preqsn | ⊢ ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfsn2 3636 | . . 3 ⊢ {𝐶} = {𝐶, 𝐶} | |
| 2 | 1 | eqeq2i 2207 | . 2 ⊢ ({𝐴, 𝐵} = {𝐶} ↔ {𝐴, 𝐵} = {𝐶, 𝐶}) | 
| 3 | preqsn.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 4 | preqsn.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 5 | preqsn.3 | . . . 4 ⊢ 𝐶 ∈ V | |
| 6 | 3, 4, 5, 5 | preq12b 3800 | . . 3 ⊢ ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) | 
| 7 | oridm 758 | . . . 4 ⊢ (((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) | |
| 8 | eqtr3 2216 | . . . . . 6 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) | |
| 9 | simpr 110 | . . . . . 6 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) | |
| 10 | 8, 9 | jca 306 | . . . . 5 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) | 
| 11 | eqtr 2214 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) | |
| 12 | simpr 110 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) | |
| 13 | 11, 12 | jca 306 | . . . . 5 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) | 
| 14 | 10, 13 | impbii 126 | . . . 4 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) | 
| 15 | 7, 14 | bitri 184 | . . 3 ⊢ (((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) | 
| 16 | 6, 15 | bitri 184 | . 2 ⊢ ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) | 
| 17 | 2, 16 | bitri 184 | 1 ⊢ ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3622 {cpr 3623 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 | 
| This theorem is referenced by: opeqsn 4285 relop 4816 | 
| Copyright terms: Public domain | W3C validator |