![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > preqsn | GIF version |
Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) |
Ref | Expression |
---|---|
preqsn.1 | ⊢ 𝐴 ∈ V |
preqsn.2 | ⊢ 𝐵 ∈ V |
preqsn.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
preqsn | ⊢ ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 3608 | . . 3 ⊢ {𝐶} = {𝐶, 𝐶} | |
2 | 1 | eqeq2i 2188 | . 2 ⊢ ({𝐴, 𝐵} = {𝐶} ↔ {𝐴, 𝐵} = {𝐶, 𝐶}) |
3 | preqsn.1 | . . . 4 ⊢ 𝐴 ∈ V | |
4 | preqsn.2 | . . . 4 ⊢ 𝐵 ∈ V | |
5 | preqsn.3 | . . . 4 ⊢ 𝐶 ∈ V | |
6 | 3, 4, 5, 5 | preq12b 3772 | . . 3 ⊢ ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
7 | oridm 757 | . . . 4 ⊢ (((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) | |
8 | eqtr3 2197 | . . . . . 6 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) | |
9 | simpr 110 | . . . . . 6 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) | |
10 | 8, 9 | jca 306 | . . . . 5 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
11 | eqtr 2195 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) | |
12 | simpr 110 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) | |
13 | 11, 12 | jca 306 | . . . . 5 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) |
14 | 10, 13 | impbii 126 | . . . 4 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
15 | 7, 14 | bitri 184 | . . 3 ⊢ (((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
16 | 6, 15 | bitri 184 | . 2 ⊢ ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
17 | 2, 16 | bitri 184 | 1 ⊢ ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∨ wo 708 = wceq 1353 ∈ wcel 2148 Vcvv 2739 {csn 3594 {cpr 3595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 |
This theorem is referenced by: opeqsn 4254 relop 4779 |
Copyright terms: Public domain | W3C validator |