![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > preqsn | GIF version |
Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) |
Ref | Expression |
---|---|
preqsn.1 | ⊢ 𝐴 ∈ V |
preqsn.2 | ⊢ 𝐵 ∈ V |
preqsn.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
preqsn | ⊢ ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 3480 | . . 3 ⊢ {𝐶} = {𝐶, 𝐶} | |
2 | 1 | eqeq2i 2105 | . 2 ⊢ ({𝐴, 𝐵} = {𝐶} ↔ {𝐴, 𝐵} = {𝐶, 𝐶}) |
3 | preqsn.1 | . . . 4 ⊢ 𝐴 ∈ V | |
4 | preqsn.2 | . . . 4 ⊢ 𝐵 ∈ V | |
5 | preqsn.3 | . . . 4 ⊢ 𝐶 ∈ V | |
6 | 3, 4, 5, 5 | preq12b 3636 | . . 3 ⊢ ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
7 | oridm 712 | . . . 4 ⊢ (((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) | |
8 | eqtr3 2114 | . . . . . 6 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) | |
9 | simpr 109 | . . . . . 6 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) | |
10 | 8, 9 | jca 301 | . . . . 5 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
11 | eqtr 2112 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) | |
12 | simpr 109 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) | |
13 | 11, 12 | jca 301 | . . . . 5 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) |
14 | 10, 13 | impbii 125 | . . . 4 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
15 | 7, 14 | bitri 183 | . . 3 ⊢ (((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
16 | 6, 15 | bitri 183 | . 2 ⊢ ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
17 | 2, 16 | bitri 183 | 1 ⊢ ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∨ wo 667 = wceq 1296 ∈ wcel 1445 Vcvv 2633 {csn 3466 {cpr 3467 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-un 3017 df-sn 3472 df-pr 3473 |
This theorem is referenced by: opeqsn 4103 relop 4617 |
Copyright terms: Public domain | W3C validator |