ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqsn GIF version

Theorem preqsn 3816
Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.)
Hypotheses
Ref Expression
preqsn.1 𝐴 ∈ V
preqsn.2 𝐵 ∈ V
preqsn.3 𝐶 ∈ V
Assertion
Ref Expression
preqsn ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵𝐵 = 𝐶))

Proof of Theorem preqsn
StepHypRef Expression
1 dfsn2 3647 . . 3 {𝐶} = {𝐶, 𝐶}
21eqeq2i 2216 . 2 ({𝐴, 𝐵} = {𝐶} ↔ {𝐴, 𝐵} = {𝐶, 𝐶})
3 preqsn.1 . . . 4 𝐴 ∈ V
4 preqsn.2 . . . 4 𝐵 ∈ V
5 preqsn.3 . . . 4 𝐶 ∈ V
63, 4, 5, 5preq12b 3811 . . 3 ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ ((𝐴 = 𝐶𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐶)))
7 oridm 759 . . . 4 (((𝐴 = 𝐶𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐶)) ↔ (𝐴 = 𝐶𝐵 = 𝐶))
8 eqtr3 2225 . . . . . 6 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)
9 simpr 110 . . . . . 6 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐵 = 𝐶)
108, 9jca 306 . . . . 5 ((𝐴 = 𝐶𝐵 = 𝐶) → (𝐴 = 𝐵𝐵 = 𝐶))
11 eqtr 2223 . . . . . 6 ((𝐴 = 𝐵𝐵 = 𝐶) → 𝐴 = 𝐶)
12 simpr 110 . . . . . 6 ((𝐴 = 𝐵𝐵 = 𝐶) → 𝐵 = 𝐶)
1311, 12jca 306 . . . . 5 ((𝐴 = 𝐵𝐵 = 𝐶) → (𝐴 = 𝐶𝐵 = 𝐶))
1410, 13impbii 126 . . . 4 ((𝐴 = 𝐶𝐵 = 𝐶) ↔ (𝐴 = 𝐵𝐵 = 𝐶))
157, 14bitri 184 . . 3 (((𝐴 = 𝐶𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐶)) ↔ (𝐴 = 𝐵𝐵 = 𝐶))
166, 15bitri 184 . 2 ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ (𝐴 = 𝐵𝐵 = 𝐶))
172, 16bitri 184 1 ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 710   = wceq 1373  wcel 2176  Vcvv 2772  {csn 3633  {cpr 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640
This theorem is referenced by:  opeqsn  4297  relop  4828  funopsn  5762
  Copyright terms: Public domain W3C validator