ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneqdifeqim GIF version

Theorem uneqdifeqim 3536
Description: Two ways that 𝐴 and 𝐵 can "partition" 𝐶 (when 𝐴 and 𝐵 don't overlap and 𝐴 is a part of 𝐶). In classical logic, the second implication would be a biconditional. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
uneqdifeqim ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 → (𝐶𝐴) = 𝐵))

Proof of Theorem uneqdifeqim
StepHypRef Expression
1 uncom 3307 . . . 4 (𝐵𝐴) = (𝐴𝐵)
2 eqtr 2214 . . . . . 6 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → (𝐵𝐴) = 𝐶)
32eqcomd 2202 . . . . 5 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → 𝐶 = (𝐵𝐴))
4 difeq1 3274 . . . . . 6 (𝐶 = (𝐵𝐴) → (𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴))
5 difun2 3530 . . . . . 6 ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)
6 eqtr 2214 . . . . . . 7 (((𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴) ∧ ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)) → (𝐶𝐴) = (𝐵𝐴))
7 incom 3355 . . . . . . . . . 10 (𝐴𝐵) = (𝐵𝐴)
87eqeq1i 2204 . . . . . . . . 9 ((𝐴𝐵) = ∅ ↔ (𝐵𝐴) = ∅)
9 disj3 3503 . . . . . . . . 9 ((𝐵𝐴) = ∅ ↔ 𝐵 = (𝐵𝐴))
108, 9bitri 184 . . . . . . . 8 ((𝐴𝐵) = ∅ ↔ 𝐵 = (𝐵𝐴))
11 eqtr 2214 . . . . . . . . . 10 (((𝐶𝐴) = (𝐵𝐴) ∧ (𝐵𝐴) = 𝐵) → (𝐶𝐴) = 𝐵)
1211expcom 116 . . . . . . . . 9 ((𝐵𝐴) = 𝐵 → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
1312eqcoms 2199 . . . . . . . 8 (𝐵 = (𝐵𝐴) → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
1410, 13sylbi 121 . . . . . . 7 ((𝐴𝐵) = ∅ → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
156, 14syl5com 29 . . . . . 6 (((𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴) ∧ ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
164, 5, 15sylancl 413 . . . . 5 (𝐶 = (𝐵𝐴) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
173, 16syl 14 . . . 4 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
181, 17mpan 424 . . 3 ((𝐴𝐵) = 𝐶 → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
1918com12 30 . 2 ((𝐴𝐵) = ∅ → ((𝐴𝐵) = 𝐶 → (𝐶𝐴) = 𝐵))
2019adantl 277 1 ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 → (𝐶𝐴) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  cdif 3154  cun 3155  cin 3156  wss 3157  c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator