ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq2 GIF version

Theorem nfeq2 2359
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
nfeq2.1 𝑥𝐵
Assertion
Ref Expression
nfeq2 𝑥 𝐴 = 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem nfeq2
StepHypRef Expression
1 nfcv 2347 . 2 𝑥𝐴
2 nfeq2.1 . 2 𝑥𝐵
31, 2nfeq 2355 1 𝑥 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wnf 1482  wnfc 2334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-cleq 2197  df-clel 2200  df-nfc 2336
This theorem is referenced by:  issetf  2778  eqvincf  2897  csbhypf  3131  nfpr  3682  intab  3913  nfmpt  4135  cbvmptf  4137  cbvmpt  4138  repizf2  4205  moop2  4294  eusvnf  4498  elrnmpt1  4927  iotaexab  5247  fmptco  5740  elabrex  5816  elabrexg  5817  nfmpo  6004  cbvmpox  6013  ovmpodxf  6061  fmpox  6276  f1od2  6311  nfrecs  6383  erovlem  6704  xpf1o  6923  mapxpen  6927  mkvprop  7242  cc3  7362  lble  9002  nfsum1  11586  nfsum  11587  zsumdc  11614  fsum3  11617  fsum3cvg2  11624  fsum2dlemstep  11664  mertenslem2  11766  nfcprod1  11784  nfcprod  11785  zproddc  11809  fprod2dlemstep  11852  ctiunctlemfo  12729  ellimc3apf  15050
  Copyright terms: Public domain W3C validator