| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeq2 | GIF version | ||
| Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq2.1 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfeq2 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfeq2.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfeq 2380 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 Ⅎwnf 1506 Ⅎwnfc 2359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 |
| This theorem is referenced by: issetf 2807 eqvincf 2928 csbhypf 3163 nfpr 3716 intab 3951 nfmpt 4175 cbvmptf 4177 cbvmpt 4178 repizf2 4245 moop2 4337 eusvnf 4543 elrnmpt1 4974 iotaexab 5296 fmptco 5800 elabrex 5880 elabrexg 5881 nfmpo 6072 cbvmpox 6081 ovmpodxf 6129 fmpox 6344 f1od2 6379 nfrecs 6451 erovlem 6772 xpf1o 7001 mapxpen 7005 mkvprop 7321 cc3 7450 lble 9090 nfsum1 11862 nfsum 11863 zsumdc 11890 fsum3 11893 fsum3cvg2 11900 fsum2dlemstep 11940 mertenslem2 12042 nfcprod1 12060 nfcprod 12061 zproddc 12085 fprod2dlemstep 12128 ctiunctlemfo 13005 ellimc3apf 15328 |
| Copyright terms: Public domain | W3C validator |