ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq2 GIF version

Theorem nfeq2 2384
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
nfeq2.1 𝑥𝐵
Assertion
Ref Expression
nfeq2 𝑥 𝐴 = 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem nfeq2
StepHypRef Expression
1 nfcv 2372 . 2 𝑥𝐴
2 nfeq2.1 . 2 𝑥𝐵
31, 2nfeq 2380 1 𝑥 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wnf 1506  wnfc 2359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361
This theorem is referenced by:  issetf  2807  eqvincf  2928  csbhypf  3163  nfpr  3716  intab  3951  nfmpt  4175  cbvmptf  4177  cbvmpt  4178  repizf2  4245  moop2  4337  eusvnf  4543  elrnmpt1  4974  iotaexab  5296  fmptco  5800  elabrex  5880  elabrexg  5881  nfmpo  6072  cbvmpox  6081  ovmpodxf  6129  fmpox  6344  f1od2  6379  nfrecs  6451  erovlem  6772  xpf1o  7001  mapxpen  7005  mkvprop  7321  cc3  7450  lble  9090  nfsum1  11862  nfsum  11863  zsumdc  11890  fsum3  11893  fsum3cvg2  11900  fsum2dlemstep  11940  mertenslem2  12042  nfcprod1  12060  nfcprod  12061  zproddc  12085  fprod2dlemstep  12128  ctiunctlemfo  13005  ellimc3apf  15328
  Copyright terms: Public domain W3C validator