ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq2 GIF version

Theorem nfeq2 2361
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
nfeq2.1 𝑥𝐵
Assertion
Ref Expression
nfeq2 𝑥 𝐴 = 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem nfeq2
StepHypRef Expression
1 nfcv 2349 . 2 𝑥𝐴
2 nfeq2.1 . 2 𝑥𝐵
31, 2nfeq 2357 1 𝑥 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wnf 1484  wnfc 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-cleq 2199  df-clel 2202  df-nfc 2338
This theorem is referenced by:  issetf  2781  eqvincf  2902  csbhypf  3136  nfpr  3688  intab  3920  nfmpt  4144  cbvmptf  4146  cbvmpt  4147  repizf2  4214  moop2  4304  eusvnf  4508  elrnmpt1  4938  iotaexab  5259  fmptco  5759  elabrex  5839  elabrexg  5840  nfmpo  6027  cbvmpox  6036  ovmpodxf  6084  fmpox  6299  f1od2  6334  nfrecs  6406  erovlem  6727  xpf1o  6956  mapxpen  6960  mkvprop  7275  cc3  7400  lble  9040  nfsum1  11742  nfsum  11743  zsumdc  11770  fsum3  11773  fsum3cvg2  11780  fsum2dlemstep  11820  mertenslem2  11922  nfcprod1  11940  nfcprod  11941  zproddc  11965  fprod2dlemstep  12008  ctiunctlemfo  12885  ellimc3apf  15207
  Copyright terms: Public domain W3C validator