| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeq2 | GIF version | ||
| Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq2.1 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfeq2 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfeq2.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfeq 2347 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 Ⅎwnf 1474 Ⅎwnfc 2326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 |
| This theorem is referenced by: issetf 2770 eqvincf 2889 csbhypf 3123 nfpr 3673 intab 3904 nfmpt 4126 cbvmptf 4128 cbvmpt 4129 repizf2 4196 moop2 4285 eusvnf 4489 elrnmpt1 4918 iotaexab 5238 fmptco 5731 elabrex 5807 elabrexg 5808 nfmpo 5995 cbvmpox 6004 ovmpodxf 6052 fmpox 6267 f1od2 6302 nfrecs 6374 erovlem 6695 xpf1o 6914 mapxpen 6918 mkvprop 7233 cc3 7351 lble 8991 nfsum1 11538 nfsum 11539 zsumdc 11566 fsum3 11569 fsum3cvg2 11576 fsum2dlemstep 11616 mertenslem2 11718 nfcprod1 11736 nfcprod 11737 zproddc 11761 fprod2dlemstep 11804 ctiunctlemfo 12681 ellimc3apf 14980 |
| Copyright terms: Public domain | W3C validator |