| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeq2 | GIF version | ||
| Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq2.1 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfeq2 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2349 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfeq2.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfeq 2357 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 Ⅎwnf 1484 Ⅎwnfc 2336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-cleq 2199 df-clel 2202 df-nfc 2338 |
| This theorem is referenced by: issetf 2781 eqvincf 2902 csbhypf 3136 nfpr 3688 intab 3920 nfmpt 4144 cbvmptf 4146 cbvmpt 4147 repizf2 4214 moop2 4304 eusvnf 4508 elrnmpt1 4938 iotaexab 5259 fmptco 5759 elabrex 5839 elabrexg 5840 nfmpo 6027 cbvmpox 6036 ovmpodxf 6084 fmpox 6299 f1od2 6334 nfrecs 6406 erovlem 6727 xpf1o 6956 mapxpen 6960 mkvprop 7275 cc3 7400 lble 9040 nfsum1 11742 nfsum 11743 zsumdc 11770 fsum3 11773 fsum3cvg2 11780 fsum2dlemstep 11820 mertenslem2 11922 nfcprod1 11940 nfcprod 11941 zproddc 11965 fprod2dlemstep 12008 ctiunctlemfo 12885 ellimc3apf 15207 |
| Copyright terms: Public domain | W3C validator |