ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq2 GIF version

Theorem nfeq2 2331
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
nfeq2.1 𝑥𝐵
Assertion
Ref Expression
nfeq2 𝑥 𝐴 = 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem nfeq2
StepHypRef Expression
1 nfcv 2319 . 2 𝑥𝐴
2 nfeq2.1 . 2 𝑥𝐵
31, 2nfeq 2327 1 𝑥 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wnf 1460  wnfc 2306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-cleq 2170  df-clel 2173  df-nfc 2308
This theorem is referenced by:  issetf  2745  eqvincf  2863  csbhypf  3096  nfpr  3643  intab  3874  nfmpt  4096  cbvmptf  4098  cbvmpt  4099  repizf2  4163  moop2  4252  eusvnf  4454  elrnmpt1  4879  fmptco  5683  elabrex  5759  nfmpo  5944  cbvmpox  5953  ovmpodxf  6000  fmpox  6201  f1od2  6236  nfrecs  6308  erovlem  6627  xpf1o  6844  mapxpen  6848  mkvprop  7156  cc3  7267  lble  8904  nfsum1  11364  nfsum  11365  zsumdc  11392  fsum3  11395  fsum3cvg2  11402  fsum2dlemstep  11442  mertenslem2  11544  nfcprod1  11562  nfcprod  11563  zproddc  11587  fprod2dlemstep  11630  ctiunctlemfo  12440  ellimc3apf  14132
  Copyright terms: Public domain W3C validator