Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfeq2 | GIF version |
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq2.1 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfeq2 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfeq2.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfeq 2316 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 Ⅎwnf 1448 Ⅎwnfc 2295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 df-nfc 2297 |
This theorem is referenced by: issetf 2733 eqvincf 2851 csbhypf 3083 nfpr 3626 intab 3853 nfmpt 4074 cbvmptf 4076 cbvmpt 4077 repizf2 4141 moop2 4229 eusvnf 4431 elrnmpt1 4855 fmptco 5651 elabrex 5726 nfmpo 5911 cbvmpox 5920 ovmpodxf 5967 fmpox 6168 f1od2 6203 nfrecs 6275 erovlem 6593 xpf1o 6810 mapxpen 6814 mkvprop 7122 cc3 7209 lble 8842 nfsum1 11297 nfsum 11298 zsumdc 11325 fsum3 11328 fsum3cvg2 11335 fsum2dlemstep 11375 mertenslem2 11477 nfcprod1 11495 nfcprod 11496 zproddc 11520 fprod2dlemstep 11563 ctiunctlemfo 12372 ellimc3apf 13269 |
Copyright terms: Public domain | W3C validator |