ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq2 GIF version

Theorem nfeq2 2351
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
nfeq2.1 𝑥𝐵
Assertion
Ref Expression
nfeq2 𝑥 𝐴 = 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem nfeq2
StepHypRef Expression
1 nfcv 2339 . 2 𝑥𝐴
2 nfeq2.1 . 2 𝑥𝐵
31, 2nfeq 2347 1 𝑥 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wnf 1474  wnfc 2326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-nfc 2328
This theorem is referenced by:  issetf  2770  eqvincf  2889  csbhypf  3123  nfpr  3672  intab  3903  nfmpt  4125  cbvmptf  4127  cbvmpt  4128  repizf2  4195  moop2  4284  eusvnf  4488  elrnmpt1  4917  iotaexab  5237  fmptco  5728  elabrex  5804  elabrexg  5805  nfmpo  5991  cbvmpox  6000  ovmpodxf  6048  fmpox  6258  f1od2  6293  nfrecs  6365  erovlem  6686  xpf1o  6905  mapxpen  6909  mkvprop  7224  cc3  7335  lble  8974  nfsum1  11521  nfsum  11522  zsumdc  11549  fsum3  11552  fsum3cvg2  11559  fsum2dlemstep  11599  mertenslem2  11701  nfcprod1  11719  nfcprod  11720  zproddc  11744  fprod2dlemstep  11787  ctiunctlemfo  12656  ellimc3apf  14896
  Copyright terms: Public domain W3C validator