| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeq2 | GIF version | ||
| Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq2.1 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfeq2 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfeq2.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfeq 2347 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 Ⅎwnf 1474 Ⅎwnfc 2326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 |
| This theorem is referenced by: issetf 2770 eqvincf 2889 csbhypf 3123 nfpr 3672 intab 3903 nfmpt 4125 cbvmptf 4127 cbvmpt 4128 repizf2 4195 moop2 4284 eusvnf 4488 elrnmpt1 4917 iotaexab 5237 fmptco 5728 elabrex 5804 elabrexg 5805 nfmpo 5991 cbvmpox 6000 ovmpodxf 6048 fmpox 6258 f1od2 6293 nfrecs 6365 erovlem 6686 xpf1o 6905 mapxpen 6909 mkvprop 7224 cc3 7335 lble 8974 nfsum1 11521 nfsum 11522 zsumdc 11549 fsum3 11552 fsum3cvg2 11559 fsum2dlemstep 11599 mertenslem2 11701 nfcprod1 11719 nfcprod 11720 zproddc 11744 fprod2dlemstep 11787 ctiunctlemfo 12656 ellimc3apf 14896 |
| Copyright terms: Public domain | W3C validator |