![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfeq2 | GIF version |
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq2.1 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfeq2 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2336 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfeq2.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfeq 2344 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 Ⅎwnf 1471 Ⅎwnfc 2323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-cleq 2186 df-clel 2189 df-nfc 2325 |
This theorem is referenced by: issetf 2767 eqvincf 2885 csbhypf 3119 nfpr 3668 intab 3899 nfmpt 4121 cbvmptf 4123 cbvmpt 4124 repizf2 4191 moop2 4280 eusvnf 4484 elrnmpt1 4913 iotaexab 5233 fmptco 5724 elabrex 5800 elabrexg 5801 nfmpo 5987 cbvmpox 5996 ovmpodxf 6044 fmpox 6253 f1od2 6288 nfrecs 6360 erovlem 6681 xpf1o 6900 mapxpen 6904 mkvprop 7217 cc3 7328 lble 8966 nfsum1 11499 nfsum 11500 zsumdc 11527 fsum3 11530 fsum3cvg2 11537 fsum2dlemstep 11577 mertenslem2 11679 nfcprod1 11697 nfcprod 11698 zproddc 11722 fprod2dlemstep 11765 ctiunctlemfo 12596 ellimc3apf 14814 |
Copyright terms: Public domain | W3C validator |