ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq2 GIF version

Theorem nfeq2 2320
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
nfeq2.1 𝑥𝐵
Assertion
Ref Expression
nfeq2 𝑥 𝐴 = 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem nfeq2
StepHypRef Expression
1 nfcv 2308 . 2 𝑥𝐴
2 nfeq2.1 . 2 𝑥𝐵
31, 2nfeq 2316 1 𝑥 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wnf 1448  wnfc 2295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2297
This theorem is referenced by:  issetf  2733  eqvincf  2851  csbhypf  3083  nfpr  3626  intab  3853  nfmpt  4074  cbvmptf  4076  cbvmpt  4077  repizf2  4141  moop2  4229  eusvnf  4431  elrnmpt1  4855  fmptco  5651  elabrex  5726  nfmpo  5911  cbvmpox  5920  ovmpodxf  5967  fmpox  6168  f1od2  6203  nfrecs  6275  erovlem  6593  xpf1o  6810  mapxpen  6814  mkvprop  7122  cc3  7209  lble  8842  nfsum1  11297  nfsum  11298  zsumdc  11325  fsum3  11328  fsum3cvg2  11335  fsum2dlemstep  11375  mertenslem2  11477  nfcprod1  11495  nfcprod  11496  zproddc  11520  fprod2dlemstep  11563  ctiunctlemfo  12372  ellimc3apf  13269
  Copyright terms: Public domain W3C validator