ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq2 GIF version

Theorem nfeq2 2359
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
nfeq2.1 𝑥𝐵
Assertion
Ref Expression
nfeq2 𝑥 𝐴 = 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem nfeq2
StepHypRef Expression
1 nfcv 2347 . 2 𝑥𝐴
2 nfeq2.1 . 2 𝑥𝐵
31, 2nfeq 2355 1 𝑥 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wnf 1482  wnfc 2334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-cleq 2197  df-clel 2200  df-nfc 2336
This theorem is referenced by:  issetf  2778  eqvincf  2897  csbhypf  3131  nfpr  3682  intab  3913  nfmpt  4135  cbvmptf  4137  cbvmpt  4138  repizf2  4205  moop2  4295  eusvnf  4499  elrnmpt1  4928  iotaexab  5249  fmptco  5745  elabrex  5825  elabrexg  5826  nfmpo  6013  cbvmpox  6022  ovmpodxf  6070  fmpox  6285  f1od2  6320  nfrecs  6392  erovlem  6713  xpf1o  6940  mapxpen  6944  mkvprop  7259  cc3  7379  lble  9019  nfsum1  11609  nfsum  11610  zsumdc  11637  fsum3  11640  fsum3cvg2  11647  fsum2dlemstep  11687  mertenslem2  11789  nfcprod1  11807  nfcprod  11808  zproddc  11832  fprod2dlemstep  11875  ctiunctlemfo  12752  ellimc3apf  15074
  Copyright terms: Public domain W3C validator