| Step | Hyp | Ref
| Expression |
| 1 | | mhmrcl1 13095 |
. . . 4
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd) |
| 2 | 1 | adantl 277 |
. . 3
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑆 ∈ Mnd) |
| 3 | | resmhm2.u |
. . . . 5
⊢ 𝑈 = (𝑇 ↾s 𝑋) |
| 4 | 3 | submmnd 13112 |
. . . 4
⊢ (𝑋 ∈ (SubMnd‘𝑇) → 𝑈 ∈ Mnd) |
| 5 | 4 | ad2antrr 488 |
. . 3
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑈 ∈ Mnd) |
| 6 | | eqid 2196 |
. . . . . . . . 9
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 7 | | eqid 2196 |
. . . . . . . . 9
⊢
(Base‘𝑇) =
(Base‘𝑇) |
| 8 | 6, 7 | mhmf 13097 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 9 | 8 | adantl 277 |
. . . . . . 7
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 10 | 9 | ffnd 5408 |
. . . . . 6
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹 Fn (Base‘𝑆)) |
| 11 | | simplr 528 |
. . . . . 6
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → ran 𝐹 ⊆ 𝑋) |
| 12 | | df-f 5262 |
. . . . . 6
⊢ (𝐹:(Base‘𝑆)⟶𝑋 ↔ (𝐹 Fn (Base‘𝑆) ∧ ran 𝐹 ⊆ 𝑋)) |
| 13 | 10, 11, 12 | sylanbrc 417 |
. . . . 5
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶𝑋) |
| 14 | 3 | submbas 13113 |
. . . . . . 7
⊢ (𝑋 ∈ (SubMnd‘𝑇) → 𝑋 = (Base‘𝑈)) |
| 15 | 14 | ad2antrr 488 |
. . . . . 6
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑋 = (Base‘𝑈)) |
| 16 | 15 | feq3d 5396 |
. . . . 5
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹:(Base‘𝑆)⟶𝑋 ↔ 𝐹:(Base‘𝑆)⟶(Base‘𝑈))) |
| 17 | 13, 16 | mpbid 147 |
. . . 4
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈)) |
| 18 | | eqid 2196 |
. . . . . . . . 9
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 19 | | eqid 2196 |
. . . . . . . . 9
⊢
(+g‘𝑇) = (+g‘𝑇) |
| 20 | 6, 18, 19 | mhmlin 13099 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 21 | 20 | 3expb 1206 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 22 | 21 | adantll 476 |
. . . . . 6
⊢ ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 23 | 3 | a1i 9 |
. . . . . . . . 9
⊢ (𝑋 ∈ (SubMnd‘𝑇) → 𝑈 = (𝑇 ↾s 𝑋)) |
| 24 | | eqidd 2197 |
. . . . . . . . 9
⊢ (𝑋 ∈ (SubMnd‘𝑇) →
(+g‘𝑇) =
(+g‘𝑇)) |
| 25 | | id 19 |
. . . . . . . . 9
⊢ (𝑋 ∈ (SubMnd‘𝑇) → 𝑋 ∈ (SubMnd‘𝑇)) |
| 26 | | submrcl 13103 |
. . . . . . . . 9
⊢ (𝑋 ∈ (SubMnd‘𝑇) → 𝑇 ∈ Mnd) |
| 27 | 23, 24, 25, 26 | ressplusgd 12806 |
. . . . . . . 8
⊢ (𝑋 ∈ (SubMnd‘𝑇) →
(+g‘𝑇) =
(+g‘𝑈)) |
| 28 | 27 | ad3antrrr 492 |
. . . . . . 7
⊢ ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g‘𝑇) = (+g‘𝑈)) |
| 29 | 28 | oveqd 5939 |
. . . . . 6
⊢ ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
| 30 | 22, 29 | eqtrd 2229 |
. . . . 5
⊢ ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
| 31 | 30 | ralrimivva 2579 |
. . . 4
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
| 32 | | eqid 2196 |
. . . . . . 7
⊢
(0g‘𝑆) = (0g‘𝑆) |
| 33 | | eqid 2196 |
. . . . . . 7
⊢
(0g‘𝑇) = (0g‘𝑇) |
| 34 | 32, 33 | mhm0 13100 |
. . . . . 6
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
| 35 | 34 | adantl 277 |
. . . . 5
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
| 36 | 3, 33 | subm0 13114 |
. . . . . 6
⊢ (𝑋 ∈ (SubMnd‘𝑇) →
(0g‘𝑇) =
(0g‘𝑈)) |
| 37 | 36 | ad2antrr 488 |
. . . . 5
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (0g‘𝑇) = (0g‘𝑈)) |
| 38 | 35, 37 | eqtrd 2229 |
. . . 4
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g‘𝑆)) = (0g‘𝑈)) |
| 39 | 17, 31, 38 | 3jca 1179 |
. . 3
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑈))) |
| 40 | | eqid 2196 |
. . . 4
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 41 | | eqid 2196 |
. . . 4
⊢
(+g‘𝑈) = (+g‘𝑈) |
| 42 | | eqid 2196 |
. . . 4
⊢
(0g‘𝑈) = (0g‘𝑈) |
| 43 | 6, 40, 18, 41, 32, 42 | ismhm 13093 |
. . 3
⊢ (𝐹 ∈ (𝑆 MndHom 𝑈) ↔ ((𝑆 ∈ Mnd ∧ 𝑈 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑈)))) |
| 44 | 2, 5, 39, 43 | syl21anbrc 1184 |
. 2
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑈)) |
| 45 | 3 | resmhm2 13120 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
| 46 | 45 | ancoms 268 |
. . 3
⊢ ((𝑋 ∈ (SubMnd‘𝑇) ∧ 𝐹 ∈ (𝑆 MndHom 𝑈)) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
| 47 | 46 | adantlr 477 |
. 2
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑈)) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
| 48 | 44, 47 | impbida 596 |
1
⊢ ((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈))) |