ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmhm2b GIF version

Theorem resmhm2b 13391
Description: Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypothesis
Ref Expression
resmhm2.u 𝑈 = (𝑇s 𝑋)
Assertion
Ref Expression
resmhm2b ((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈)))

Proof of Theorem resmhm2b
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl1 13365 . . . 4 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)
21adantl 277 . . 3 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑆 ∈ Mnd)
3 resmhm2.u . . . . 5 𝑈 = (𝑇s 𝑋)
43submmnd 13382 . . . 4 (𝑋 ∈ (SubMnd‘𝑇) → 𝑈 ∈ Mnd)
54ad2antrr 488 . . 3 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑈 ∈ Mnd)
6 eqid 2206 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
7 eqid 2206 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
86, 7mhmf 13367 . . . . . . . 8 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
98adantl 277 . . . . . . 7 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
109ffnd 5435 . . . . . 6 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹 Fn (Base‘𝑆))
11 simplr 528 . . . . . 6 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → ran 𝐹𝑋)
12 df-f 5283 . . . . . 6 (𝐹:(Base‘𝑆)⟶𝑋 ↔ (𝐹 Fn (Base‘𝑆) ∧ ran 𝐹𝑋))
1310, 11, 12sylanbrc 417 . . . . 5 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶𝑋)
143submbas 13383 . . . . . . 7 (𝑋 ∈ (SubMnd‘𝑇) → 𝑋 = (Base‘𝑈))
1514ad2antrr 488 . . . . . 6 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑋 = (Base‘𝑈))
1615feq3d 5423 . . . . 5 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹:(Base‘𝑆)⟶𝑋𝐹:(Base‘𝑆)⟶(Base‘𝑈)))
1713, 16mpbid 147 . . . 4 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈))
18 eqid 2206 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
19 eqid 2206 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
206, 18, 19mhmlin 13369 . . . . . . . 8 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
21203expb 1207 . . . . . . 7 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2221adantll 476 . . . . . 6 ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
233a1i 9 . . . . . . . . 9 (𝑋 ∈ (SubMnd‘𝑇) → 𝑈 = (𝑇s 𝑋))
24 eqidd 2207 . . . . . . . . 9 (𝑋 ∈ (SubMnd‘𝑇) → (+g𝑇) = (+g𝑇))
25 id 19 . . . . . . . . 9 (𝑋 ∈ (SubMnd‘𝑇) → 𝑋 ∈ (SubMnd‘𝑇))
26 submrcl 13373 . . . . . . . . 9 (𝑋 ∈ (SubMnd‘𝑇) → 𝑇 ∈ Mnd)
2723, 24, 25, 26ressplusgd 13031 . . . . . . . 8 (𝑋 ∈ (SubMnd‘𝑇) → (+g𝑇) = (+g𝑈))
2827ad3antrrr 492 . . . . . . 7 ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g𝑇) = (+g𝑈))
2928oveqd 5973 . . . . . 6 ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
3022, 29eqtrd 2239 . . . . 5 ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
3130ralrimivva 2589 . . . 4 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
32 eqid 2206 . . . . . . 7 (0g𝑆) = (0g𝑆)
33 eqid 2206 . . . . . . 7 (0g𝑇) = (0g𝑇)
3432, 33mhm0 13370 . . . . . 6 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
3534adantl 277 . . . . 5 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g𝑆)) = (0g𝑇))
363, 33subm0 13384 . . . . . 6 (𝑋 ∈ (SubMnd‘𝑇) → (0g𝑇) = (0g𝑈))
3736ad2antrr 488 . . . . 5 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (0g𝑇) = (0g𝑈))
3835, 37eqtrd 2239 . . . 4 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g𝑆)) = (0g𝑈))
3917, 31, 383jca 1180 . . 3 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑈)))
40 eqid 2206 . . . 4 (Base‘𝑈) = (Base‘𝑈)
41 eqid 2206 . . . 4 (+g𝑈) = (+g𝑈)
42 eqid 2206 . . . 4 (0g𝑈) = (0g𝑈)
436, 40, 18, 41, 32, 42ismhm 13363 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑈) ↔ ((𝑆 ∈ Mnd ∧ 𝑈 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑈))))
442, 5, 39, 43syl21anbrc 1185 . 2 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑈))
453resmhm2 13390 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
4645ancoms 268 . . 3 ((𝑋 ∈ (SubMnd‘𝑇) ∧ 𝐹 ∈ (𝑆 MndHom 𝑈)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
4746adantlr 477 . 2 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑈)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
4844, 47impbida 596 1 ((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  wral 2485  wss 3170  ran crn 4683   Fn wfn 5274  wf 5275  cfv 5279  (class class class)co 5956  Basecbs 12902  s cress 12903  +gcplusg 12979  0gc0g 13158  Mndcmnd 13318   MndHom cmhm 13359  SubMndcsubmnd 13360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-pre-ltirr 8052  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-map 6749  df-pnf 8124  df-mnf 8125  df-ltxr 8127  df-inn 9052  df-2 9110  df-ndx 12905  df-slot 12906  df-base 12908  df-sets 12909  df-iress 12910  df-plusg 12992  df-0g 13160  df-mgm 13258  df-sgrp 13304  df-mnd 13319  df-mhm 13361  df-submnd 13362
This theorem is referenced by:  resghm2b  13668  resrhm2b  14081  lgseisenlem4  15620
  Copyright terms: Public domain W3C validator