Step | Hyp | Ref
| Expression |
1 | | mhmrcl1 12912 |
. . . 4
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd) |
2 | 1 | adantl 277 |
. . 3
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑆 ∈ Mnd) |
3 | | resmhm2.u |
. . . . 5
⊢ 𝑈 = (𝑇 ↾s 𝑋) |
4 | 3 | submmnd 12929 |
. . . 4
⊢ (𝑋 ∈ (SubMnd‘𝑇) → 𝑈 ∈ Mnd) |
5 | 4 | ad2antrr 488 |
. . 3
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑈 ∈ Mnd) |
6 | | eqid 2189 |
. . . . . . . . 9
⊢
(Base‘𝑆) =
(Base‘𝑆) |
7 | | eqid 2189 |
. . . . . . . . 9
⊢
(Base‘𝑇) =
(Base‘𝑇) |
8 | 6, 7 | mhmf 12914 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
9 | 8 | adantl 277 |
. . . . . . 7
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
10 | 9 | ffnd 5385 |
. . . . . 6
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹 Fn (Base‘𝑆)) |
11 | | simplr 528 |
. . . . . 6
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → ran 𝐹 ⊆ 𝑋) |
12 | | df-f 5239 |
. . . . . 6
⊢ (𝐹:(Base‘𝑆)⟶𝑋 ↔ (𝐹 Fn (Base‘𝑆) ∧ ran 𝐹 ⊆ 𝑋)) |
13 | 10, 11, 12 | sylanbrc 417 |
. . . . 5
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶𝑋) |
14 | 3 | submbas 12930 |
. . . . . . 7
⊢ (𝑋 ∈ (SubMnd‘𝑇) → 𝑋 = (Base‘𝑈)) |
15 | 14 | ad2antrr 488 |
. . . . . 6
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑋 = (Base‘𝑈)) |
16 | 15 | feq3d 5373 |
. . . . 5
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹:(Base‘𝑆)⟶𝑋 ↔ 𝐹:(Base‘𝑆)⟶(Base‘𝑈))) |
17 | 13, 16 | mpbid 147 |
. . . 4
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈)) |
18 | | eqid 2189 |
. . . . . . . . 9
⊢
(+g‘𝑆) = (+g‘𝑆) |
19 | | eqid 2189 |
. . . . . . . . 9
⊢
(+g‘𝑇) = (+g‘𝑇) |
20 | 6, 18, 19 | mhmlin 12916 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
21 | 20 | 3expb 1206 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
22 | 21 | adantll 476 |
. . . . . 6
⊢ ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
23 | 3 | a1i 9 |
. . . . . . . . 9
⊢ (𝑋 ∈ (SubMnd‘𝑇) → 𝑈 = (𝑇 ↾s 𝑋)) |
24 | | eqidd 2190 |
. . . . . . . . 9
⊢ (𝑋 ∈ (SubMnd‘𝑇) →
(+g‘𝑇) =
(+g‘𝑇)) |
25 | | id 19 |
. . . . . . . . 9
⊢ (𝑋 ∈ (SubMnd‘𝑇) → 𝑋 ∈ (SubMnd‘𝑇)) |
26 | | submrcl 12920 |
. . . . . . . . 9
⊢ (𝑋 ∈ (SubMnd‘𝑇) → 𝑇 ∈ Mnd) |
27 | 23, 24, 25, 26 | ressplusgd 12637 |
. . . . . . . 8
⊢ (𝑋 ∈ (SubMnd‘𝑇) →
(+g‘𝑇) =
(+g‘𝑈)) |
28 | 27 | ad3antrrr 492 |
. . . . . . 7
⊢ ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g‘𝑇) = (+g‘𝑈)) |
29 | 28 | oveqd 5912 |
. . . . . 6
⊢ ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
30 | 22, 29 | eqtrd 2222 |
. . . . 5
⊢ ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
31 | 30 | ralrimivva 2572 |
. . . 4
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
32 | | eqid 2189 |
. . . . . . 7
⊢
(0g‘𝑆) = (0g‘𝑆) |
33 | | eqid 2189 |
. . . . . . 7
⊢
(0g‘𝑇) = (0g‘𝑇) |
34 | 32, 33 | mhm0 12917 |
. . . . . 6
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
35 | 34 | adantl 277 |
. . . . 5
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
36 | 3, 33 | subm0 12931 |
. . . . . 6
⊢ (𝑋 ∈ (SubMnd‘𝑇) →
(0g‘𝑇) =
(0g‘𝑈)) |
37 | 36 | ad2antrr 488 |
. . . . 5
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (0g‘𝑇) = (0g‘𝑈)) |
38 | 35, 37 | eqtrd 2222 |
. . . 4
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g‘𝑆)) = (0g‘𝑈)) |
39 | 17, 31, 38 | 3jca 1179 |
. . 3
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑈))) |
40 | | eqid 2189 |
. . . 4
⊢
(Base‘𝑈) =
(Base‘𝑈) |
41 | | eqid 2189 |
. . . 4
⊢
(+g‘𝑈) = (+g‘𝑈) |
42 | | eqid 2189 |
. . . 4
⊢
(0g‘𝑈) = (0g‘𝑈) |
43 | 6, 40, 18, 41, 32, 42 | ismhm 12910 |
. . 3
⊢ (𝐹 ∈ (𝑆 MndHom 𝑈) ↔ ((𝑆 ∈ Mnd ∧ 𝑈 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑈)))) |
44 | 2, 5, 39, 43 | syl21anbrc 1184 |
. 2
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑈)) |
45 | 3 | resmhm2 12937 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
46 | 45 | ancoms 268 |
. . 3
⊢ ((𝑋 ∈ (SubMnd‘𝑇) ∧ 𝐹 ∈ (𝑆 MndHom 𝑈)) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
47 | 46 | adantlr 477 |
. 2
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑈)) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
48 | 44, 47 | impbida 596 |
1
⊢ ((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈))) |