ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isghm GIF version

Theorem isghm 13654
Description: Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
isghm.w 𝑋 = (Base‘𝑆)
isghm.x 𝑌 = (Base‘𝑇)
isghm.a + = (+g𝑆)
isghm.b = (+g𝑇)
Assertion
Ref Expression
isghm (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
Distinct variable groups:   𝑣,𝑢,𝑆   𝑢,𝑇,𝑣   𝑢,𝑋,𝑣   𝑢, + ,𝑣   𝑢,𝑌,𝑣   𝑢, ,𝑣   𝑢,𝐹,𝑣

Proof of Theorem isghm
Dummy variables 𝑡 𝑠 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ghm 13652 . . 3 GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑓[(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))})
21elmpocl 6154 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp))
3 isghm.w . . . . . . . 8 𝑋 = (Base‘𝑆)
4 basfn 12965 . . . . . . . . 9 Base Fn V
5 elex 2785 . . . . . . . . . 10 (𝑆 ∈ Grp → 𝑆 ∈ V)
65adantr 276 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝑆 ∈ V)
7 funfvex 5606 . . . . . . . . . 10 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
87funfni 5385 . . . . . . . . 9 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
94, 6, 8sylancr 414 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (Base‘𝑆) ∈ V)
103, 9eqeltrid 2293 . . . . . . 7 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝑋 ∈ V)
11 isghm.x . . . . . . . 8 𝑌 = (Base‘𝑇)
12 elex 2785 . . . . . . . . . 10 (𝑇 ∈ Grp → 𝑇 ∈ V)
1312adantl 277 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝑇 ∈ V)
14 funfvex 5606 . . . . . . . . . 10 ((Fun Base ∧ 𝑇 ∈ dom Base) → (Base‘𝑇) ∈ V)
1514funfni 5385 . . . . . . . . 9 ((Base Fn V ∧ 𝑇 ∈ V) → (Base‘𝑇) ∈ V)
164, 13, 15sylancr 414 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (Base‘𝑇) ∈ V)
1711, 16eqeltrid 2293 . . . . . . 7 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝑌 ∈ V)
18 mapex 6754 . . . . . . 7 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {𝑓𝑓:𝑋𝑌} ∈ V)
1910, 17, 18syl2anc 411 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → {𝑓𝑓:𝑋𝑌} ∈ V)
20 simpl 109 . . . . . . . 8 ((𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))) → 𝑓:𝑋𝑌)
2120ss2abi 3269 . . . . . . 7 {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ⊆ {𝑓𝑓:𝑋𝑌}
2221a1i 9 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ⊆ {𝑓𝑓:𝑋𝑌})
2319, 22ssexd 4192 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ∈ V)
24 vex 2776 . . . . . . . . . 10 𝑠 ∈ V
25 funfvex 5606 . . . . . . . . . . 11 ((Fun Base ∧ 𝑠 ∈ dom Base) → (Base‘𝑠) ∈ V)
2625funfni 5385 . . . . . . . . . 10 ((Base Fn V ∧ 𝑠 ∈ V) → (Base‘𝑠) ∈ V)
274, 24, 26mp2an 426 . . . . . . . . 9 (Base‘𝑠) ∈ V
28 feq2 5419 . . . . . . . . . 10 (𝑤 = (Base‘𝑠) → (𝑓:𝑤⟶(Base‘𝑡) ↔ 𝑓:(Base‘𝑠)⟶(Base‘𝑡)))
29 raleq 2703 . . . . . . . . . . 11 (𝑤 = (Base‘𝑠) → (∀𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
3029raleqbi1dv 2715 . . . . . . . . . 10 (𝑤 = (Base‘𝑠) → (∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
3128, 30anbi12d 473 . . . . . . . . 9 (𝑤 = (Base‘𝑠) → ((𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))))
3227, 31sbcie 3037 . . . . . . . 8 ([(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
33 fveq2 5589 . . . . . . . . . . 11 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
3433, 3eqtr4di 2257 . . . . . . . . . 10 (𝑠 = 𝑆 → (Base‘𝑠) = 𝑋)
3534feq2d 5423 . . . . . . . . 9 (𝑠 = 𝑆 → (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ↔ 𝑓:𝑋⟶(Base‘𝑡)))
36 fveq2 5589 . . . . . . . . . . . . . 14 (𝑠 = 𝑆 → (+g𝑠) = (+g𝑆))
37 isghm.a . . . . . . . . . . . . . 14 + = (+g𝑆)
3836, 37eqtr4di 2257 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (+g𝑠) = + )
3938oveqd 5974 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (𝑢(+g𝑠)𝑣) = (𝑢 + 𝑣))
4039fveqeq2d 5597 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
4134, 40raleqbidv 2719 . . . . . . . . . 10 (𝑠 = 𝑆 → (∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
4234, 41raleqbidv 2719 . . . . . . . . 9 (𝑠 = 𝑆 → (∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
4335, 42anbi12d 473 . . . . . . . 8 (𝑠 = 𝑆 → ((𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))))
4432, 43bitrid 192 . . . . . . 7 (𝑠 = 𝑆 → ([(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))))
4544abbidv 2324 . . . . . 6 (𝑠 = 𝑆 → {𝑓[(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} = {𝑓 ∣ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))})
46 fveq2 5589 . . . . . . . . . 10 (𝑡 = 𝑇 → (Base‘𝑡) = (Base‘𝑇))
4746, 11eqtr4di 2257 . . . . . . . . 9 (𝑡 = 𝑇 → (Base‘𝑡) = 𝑌)
4847feq3d 5424 . . . . . . . 8 (𝑡 = 𝑇 → (𝑓:𝑋⟶(Base‘𝑡) ↔ 𝑓:𝑋𝑌))
49 fveq2 5589 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (+g𝑡) = (+g𝑇))
50 isghm.b . . . . . . . . . . . 12 = (+g𝑇)
5149, 50eqtr4di 2257 . . . . . . . . . . 11 (𝑡 = 𝑇 → (+g𝑡) = )
5251oveqd 5974 . . . . . . . . . 10 (𝑡 = 𝑇 → ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) = ((𝑓𝑢) (𝑓𝑣)))
5352eqeq2d 2218 . . . . . . . . 9 (𝑡 = 𝑇 → ((𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))))
54532ralbidv 2531 . . . . . . . 8 (𝑡 = 𝑇 → (∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))))
5548, 54anbi12d 473 . . . . . . 7 (𝑡 = 𝑇 → ((𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))))
5655abbidv 2324 . . . . . 6 (𝑡 = 𝑇 → {𝑓 ∣ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} = {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))})
5745, 56, 1ovmpog 6093 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ∈ V) → (𝑆 GrpHom 𝑇) = {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))})
5823, 57mpd3an3 1351 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))})
5958eleq2d 2276 . . 3 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))}))
60 simpr 110 . . . . . . 7 (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝐹:𝑋𝑌) → 𝐹:𝑋𝑌)
6110adantr 276 . . . . . . 7 (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝐹:𝑋𝑌) → 𝑋 ∈ V)
6260, 61fexd 5827 . . . . . 6 (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝐹:𝑋𝑌) → 𝐹 ∈ V)
6362ex 115 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹:𝑋𝑌𝐹 ∈ V))
6463adantrd 279 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → ((𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))) → 𝐹 ∈ V))
65 feq1 5418 . . . . . 6 (𝑓 = 𝐹 → (𝑓:𝑋𝑌𝐹:𝑋𝑌))
66 fveq1 5588 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑢 + 𝑣)) = (𝐹‘(𝑢 + 𝑣)))
67 fveq1 5588 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑢) = (𝐹𝑢))
68 fveq1 5588 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑣) = (𝐹𝑣))
6967, 68oveq12d 5975 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑢) (𝑓𝑣)) = ((𝐹𝑢) (𝐹𝑣)))
7066, 69eqeq12d 2221 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)) ↔ (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))))
71702ralbidv 2531 . . . . . 6 (𝑓 = 𝐹 → (∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)) ↔ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))))
7265, 71anbi12d 473 . . . . 5 (𝑓 = 𝐹 → ((𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
7372elab3g 2928 . . . 4 (((𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))) → 𝐹 ∈ V) → (𝐹 ∈ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
7464, 73syl 14 . . 3 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
7559, 74bitrd 188 . 2 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
762, 75biadanii 613 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  {cab 2192  wral 2485  Vcvv 2773  [wsbc 3002  wss 3170   Fn wfn 5275  wf 5276  cfv 5280  (class class class)co 5957  Basecbs 12907  +gcplusg 12984  Grpcgrp 13407   GrpHom cghm 13651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-inn 9057  df-ndx 12910  df-slot 12911  df-base 12913  df-ghm 13652
This theorem is referenced by:  isghm3  13655  ghmgrp1  13656  ghmgrp2  13657  ghmf  13658  ghmlin  13659  isghmd  13663  idghm  13670  ghmf1o  13686  rhmopp  14013  expghmap  14444  mulgghm2  14445
  Copyright terms: Public domain W3C validator