ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isghm GIF version

Theorem isghm 13449
Description: Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
isghm.w 𝑋 = (Base‘𝑆)
isghm.x 𝑌 = (Base‘𝑇)
isghm.a + = (+g𝑆)
isghm.b = (+g𝑇)
Assertion
Ref Expression
isghm (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
Distinct variable groups:   𝑣,𝑢,𝑆   𝑢,𝑇,𝑣   𝑢,𝑋,𝑣   𝑢, + ,𝑣   𝑢,𝑌,𝑣   𝑢, ,𝑣   𝑢,𝐹,𝑣

Proof of Theorem isghm
Dummy variables 𝑡 𝑠 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ghm 13447 . . 3 GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑓[(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))})
21elmpocl 6122 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp))
3 isghm.w . . . . . . . 8 𝑋 = (Base‘𝑆)
4 basfn 12761 . . . . . . . . 9 Base Fn V
5 elex 2774 . . . . . . . . . 10 (𝑆 ∈ Grp → 𝑆 ∈ V)
65adantr 276 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝑆 ∈ V)
7 funfvex 5578 . . . . . . . . . 10 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
87funfni 5361 . . . . . . . . 9 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
94, 6, 8sylancr 414 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (Base‘𝑆) ∈ V)
103, 9eqeltrid 2283 . . . . . . 7 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝑋 ∈ V)
11 isghm.x . . . . . . . 8 𝑌 = (Base‘𝑇)
12 elex 2774 . . . . . . . . . 10 (𝑇 ∈ Grp → 𝑇 ∈ V)
1312adantl 277 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝑇 ∈ V)
14 funfvex 5578 . . . . . . . . . 10 ((Fun Base ∧ 𝑇 ∈ dom Base) → (Base‘𝑇) ∈ V)
1514funfni 5361 . . . . . . . . 9 ((Base Fn V ∧ 𝑇 ∈ V) → (Base‘𝑇) ∈ V)
164, 13, 15sylancr 414 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (Base‘𝑇) ∈ V)
1711, 16eqeltrid 2283 . . . . . . 7 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝑌 ∈ V)
18 mapex 6722 . . . . . . 7 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {𝑓𝑓:𝑋𝑌} ∈ V)
1910, 17, 18syl2anc 411 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → {𝑓𝑓:𝑋𝑌} ∈ V)
20 simpl 109 . . . . . . . 8 ((𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))) → 𝑓:𝑋𝑌)
2120ss2abi 3256 . . . . . . 7 {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ⊆ {𝑓𝑓:𝑋𝑌}
2221a1i 9 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ⊆ {𝑓𝑓:𝑋𝑌})
2319, 22ssexd 4174 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ∈ V)
24 vex 2766 . . . . . . . . . 10 𝑠 ∈ V
25 funfvex 5578 . . . . . . . . . . 11 ((Fun Base ∧ 𝑠 ∈ dom Base) → (Base‘𝑠) ∈ V)
2625funfni 5361 . . . . . . . . . 10 ((Base Fn V ∧ 𝑠 ∈ V) → (Base‘𝑠) ∈ V)
274, 24, 26mp2an 426 . . . . . . . . 9 (Base‘𝑠) ∈ V
28 feq2 5394 . . . . . . . . . 10 (𝑤 = (Base‘𝑠) → (𝑓:𝑤⟶(Base‘𝑡) ↔ 𝑓:(Base‘𝑠)⟶(Base‘𝑡)))
29 raleq 2693 . . . . . . . . . . 11 (𝑤 = (Base‘𝑠) → (∀𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
3029raleqbi1dv 2705 . . . . . . . . . 10 (𝑤 = (Base‘𝑠) → (∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
3128, 30anbi12d 473 . . . . . . . . 9 (𝑤 = (Base‘𝑠) → ((𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))))
3227, 31sbcie 3024 . . . . . . . 8 ([(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
33 fveq2 5561 . . . . . . . . . . 11 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
3433, 3eqtr4di 2247 . . . . . . . . . 10 (𝑠 = 𝑆 → (Base‘𝑠) = 𝑋)
3534feq2d 5398 . . . . . . . . 9 (𝑠 = 𝑆 → (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ↔ 𝑓:𝑋⟶(Base‘𝑡)))
36 fveq2 5561 . . . . . . . . . . . . . 14 (𝑠 = 𝑆 → (+g𝑠) = (+g𝑆))
37 isghm.a . . . . . . . . . . . . . 14 + = (+g𝑆)
3836, 37eqtr4di 2247 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (+g𝑠) = + )
3938oveqd 5942 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (𝑢(+g𝑠)𝑣) = (𝑢 + 𝑣))
4039fveqeq2d 5569 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
4134, 40raleqbidv 2709 . . . . . . . . . 10 (𝑠 = 𝑆 → (∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
4234, 41raleqbidv 2709 . . . . . . . . 9 (𝑠 = 𝑆 → (∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
4335, 42anbi12d 473 . . . . . . . 8 (𝑠 = 𝑆 → ((𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))))
4432, 43bitrid 192 . . . . . . 7 (𝑠 = 𝑆 → ([(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))))
4544abbidv 2314 . . . . . 6 (𝑠 = 𝑆 → {𝑓[(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} = {𝑓 ∣ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))})
46 fveq2 5561 . . . . . . . . . 10 (𝑡 = 𝑇 → (Base‘𝑡) = (Base‘𝑇))
4746, 11eqtr4di 2247 . . . . . . . . 9 (𝑡 = 𝑇 → (Base‘𝑡) = 𝑌)
4847feq3d 5399 . . . . . . . 8 (𝑡 = 𝑇 → (𝑓:𝑋⟶(Base‘𝑡) ↔ 𝑓:𝑋𝑌))
49 fveq2 5561 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (+g𝑡) = (+g𝑇))
50 isghm.b . . . . . . . . . . . 12 = (+g𝑇)
5149, 50eqtr4di 2247 . . . . . . . . . . 11 (𝑡 = 𝑇 → (+g𝑡) = )
5251oveqd 5942 . . . . . . . . . 10 (𝑡 = 𝑇 → ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) = ((𝑓𝑢) (𝑓𝑣)))
5352eqeq2d 2208 . . . . . . . . 9 (𝑡 = 𝑇 → ((𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))))
54532ralbidv 2521 . . . . . . . 8 (𝑡 = 𝑇 → (∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))))
5548, 54anbi12d 473 . . . . . . 7 (𝑡 = 𝑇 → ((𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))))
5655abbidv 2314 . . . . . 6 (𝑡 = 𝑇 → {𝑓 ∣ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} = {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))})
5745, 56, 1ovmpog 6061 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ∈ V) → (𝑆 GrpHom 𝑇) = {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))})
5823, 57mpd3an3 1349 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))})
5958eleq2d 2266 . . 3 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))}))
60 simpr 110 . . . . . . 7 (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝐹:𝑋𝑌) → 𝐹:𝑋𝑌)
6110adantr 276 . . . . . . 7 (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝐹:𝑋𝑌) → 𝑋 ∈ V)
6260, 61fexd 5795 . . . . . 6 (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝐹:𝑋𝑌) → 𝐹 ∈ V)
6362ex 115 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹:𝑋𝑌𝐹 ∈ V))
6463adantrd 279 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → ((𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))) → 𝐹 ∈ V))
65 feq1 5393 . . . . . 6 (𝑓 = 𝐹 → (𝑓:𝑋𝑌𝐹:𝑋𝑌))
66 fveq1 5560 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑢 + 𝑣)) = (𝐹‘(𝑢 + 𝑣)))
67 fveq1 5560 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑢) = (𝐹𝑢))
68 fveq1 5560 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑣) = (𝐹𝑣))
6967, 68oveq12d 5943 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑢) (𝑓𝑣)) = ((𝐹𝑢) (𝐹𝑣)))
7066, 69eqeq12d 2211 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)) ↔ (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))))
71702ralbidv 2521 . . . . . 6 (𝑓 = 𝐹 → (∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)) ↔ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))))
7265, 71anbi12d 473 . . . . 5 (𝑓 = 𝐹 → ((𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
7372elab3g 2915 . . . 4 (((𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))) → 𝐹 ∈ V) → (𝐹 ∈ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
7464, 73syl 14 . . 3 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
7559, 74bitrd 188 . 2 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
762, 75biadanii 613 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {cab 2182  wral 2475  Vcvv 2763  [wsbc 2989  wss 3157   Fn wfn 5254  wf 5255  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  Grpcgrp 13202   GrpHom cghm 13446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-ghm 13447
This theorem is referenced by:  isghm3  13450  ghmgrp1  13451  ghmgrp2  13452  ghmf  13453  ghmlin  13454  isghmd  13458  idghm  13465  ghmf1o  13481  rhmopp  13808  expghmap  14239  mulgghm2  14240
  Copyright terms: Public domain W3C validator