ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isghm GIF version

Theorem isghm 13313
Description: Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
isghm.w 𝑋 = (Base‘𝑆)
isghm.x 𝑌 = (Base‘𝑇)
isghm.a + = (+g𝑆)
isghm.b = (+g𝑇)
Assertion
Ref Expression
isghm (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
Distinct variable groups:   𝑣,𝑢,𝑆   𝑢,𝑇,𝑣   𝑢,𝑋,𝑣   𝑢, + ,𝑣   𝑢,𝑌,𝑣   𝑢, ,𝑣   𝑢,𝐹,𝑣

Proof of Theorem isghm
Dummy variables 𝑡 𝑠 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ghm 13311 . . 3 GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑓[(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))})
21elmpocl 6113 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp))
3 isghm.w . . . . . . . 8 𝑋 = (Base‘𝑆)
4 basfn 12676 . . . . . . . . 9 Base Fn V
5 elex 2771 . . . . . . . . . 10 (𝑆 ∈ Grp → 𝑆 ∈ V)
65adantr 276 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝑆 ∈ V)
7 funfvex 5571 . . . . . . . . . 10 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
87funfni 5354 . . . . . . . . 9 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
94, 6, 8sylancr 414 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (Base‘𝑆) ∈ V)
103, 9eqeltrid 2280 . . . . . . 7 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝑋 ∈ V)
11 isghm.x . . . . . . . 8 𝑌 = (Base‘𝑇)
12 elex 2771 . . . . . . . . . 10 (𝑇 ∈ Grp → 𝑇 ∈ V)
1312adantl 277 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝑇 ∈ V)
14 funfvex 5571 . . . . . . . . . 10 ((Fun Base ∧ 𝑇 ∈ dom Base) → (Base‘𝑇) ∈ V)
1514funfni 5354 . . . . . . . . 9 ((Base Fn V ∧ 𝑇 ∈ V) → (Base‘𝑇) ∈ V)
164, 13, 15sylancr 414 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (Base‘𝑇) ∈ V)
1711, 16eqeltrid 2280 . . . . . . 7 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝑌 ∈ V)
18 mapex 6708 . . . . . . 7 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {𝑓𝑓:𝑋𝑌} ∈ V)
1910, 17, 18syl2anc 411 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → {𝑓𝑓:𝑋𝑌} ∈ V)
20 simpl 109 . . . . . . . 8 ((𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))) → 𝑓:𝑋𝑌)
2120ss2abi 3251 . . . . . . 7 {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ⊆ {𝑓𝑓:𝑋𝑌}
2221a1i 9 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ⊆ {𝑓𝑓:𝑋𝑌})
2319, 22ssexd 4169 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ∈ V)
24 vex 2763 . . . . . . . . . 10 𝑠 ∈ V
25 funfvex 5571 . . . . . . . . . . 11 ((Fun Base ∧ 𝑠 ∈ dom Base) → (Base‘𝑠) ∈ V)
2625funfni 5354 . . . . . . . . . 10 ((Base Fn V ∧ 𝑠 ∈ V) → (Base‘𝑠) ∈ V)
274, 24, 26mp2an 426 . . . . . . . . 9 (Base‘𝑠) ∈ V
28 feq2 5387 . . . . . . . . . 10 (𝑤 = (Base‘𝑠) → (𝑓:𝑤⟶(Base‘𝑡) ↔ 𝑓:(Base‘𝑠)⟶(Base‘𝑡)))
29 raleq 2690 . . . . . . . . . . 11 (𝑤 = (Base‘𝑠) → (∀𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
3029raleqbi1dv 2702 . . . . . . . . . 10 (𝑤 = (Base‘𝑠) → (∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
3128, 30anbi12d 473 . . . . . . . . 9 (𝑤 = (Base‘𝑠) → ((𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))))
3227, 31sbcie 3020 . . . . . . . 8 ([(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
33 fveq2 5554 . . . . . . . . . . 11 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
3433, 3eqtr4di 2244 . . . . . . . . . 10 (𝑠 = 𝑆 → (Base‘𝑠) = 𝑋)
3534feq2d 5391 . . . . . . . . 9 (𝑠 = 𝑆 → (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ↔ 𝑓:𝑋⟶(Base‘𝑡)))
36 fveq2 5554 . . . . . . . . . . . . . 14 (𝑠 = 𝑆 → (+g𝑠) = (+g𝑆))
37 isghm.a . . . . . . . . . . . . . 14 + = (+g𝑆)
3836, 37eqtr4di 2244 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (+g𝑠) = + )
3938oveqd 5935 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (𝑢(+g𝑠)𝑣) = (𝑢 + 𝑣))
4039fveqeq2d 5562 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
4134, 40raleqbidv 2706 . . . . . . . . . 10 (𝑠 = 𝑆 → (∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
4234, 41raleqbidv 2706 . . . . . . . . 9 (𝑠 = 𝑆 → (∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
4335, 42anbi12d 473 . . . . . . . 8 (𝑠 = 𝑆 → ((𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))))
4432, 43bitrid 192 . . . . . . 7 (𝑠 = 𝑆 → ([(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))))
4544abbidv 2311 . . . . . 6 (𝑠 = 𝑆 → {𝑓[(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} = {𝑓 ∣ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))})
46 fveq2 5554 . . . . . . . . . 10 (𝑡 = 𝑇 → (Base‘𝑡) = (Base‘𝑇))
4746, 11eqtr4di 2244 . . . . . . . . 9 (𝑡 = 𝑇 → (Base‘𝑡) = 𝑌)
4847feq3d 5392 . . . . . . . 8 (𝑡 = 𝑇 → (𝑓:𝑋⟶(Base‘𝑡) ↔ 𝑓:𝑋𝑌))
49 fveq2 5554 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (+g𝑡) = (+g𝑇))
50 isghm.b . . . . . . . . . . . 12 = (+g𝑇)
5149, 50eqtr4di 2244 . . . . . . . . . . 11 (𝑡 = 𝑇 → (+g𝑡) = )
5251oveqd 5935 . . . . . . . . . 10 (𝑡 = 𝑇 → ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) = ((𝑓𝑢) (𝑓𝑣)))
5352eqeq2d 2205 . . . . . . . . 9 (𝑡 = 𝑇 → ((𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))))
54532ralbidv 2518 . . . . . . . 8 (𝑡 = 𝑇 → (∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))))
5548, 54anbi12d 473 . . . . . . 7 (𝑡 = 𝑇 → ((𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))))
5655abbidv 2311 . . . . . 6 (𝑡 = 𝑇 → {𝑓 ∣ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} = {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))})
5745, 56, 1ovmpog 6053 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ∈ V) → (𝑆 GrpHom 𝑇) = {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))})
5823, 57mpd3an3 1349 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))})
5958eleq2d 2263 . . 3 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))}))
60 simpr 110 . . . . . . 7 (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝐹:𝑋𝑌) → 𝐹:𝑋𝑌)
6110adantr 276 . . . . . . 7 (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝐹:𝑋𝑌) → 𝑋 ∈ V)
6260, 61fexd 5788 . . . . . 6 (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝐹:𝑋𝑌) → 𝐹 ∈ V)
6362ex 115 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹:𝑋𝑌𝐹 ∈ V))
6463adantrd 279 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → ((𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))) → 𝐹 ∈ V))
65 feq1 5386 . . . . . 6 (𝑓 = 𝐹 → (𝑓:𝑋𝑌𝐹:𝑋𝑌))
66 fveq1 5553 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑢 + 𝑣)) = (𝐹‘(𝑢 + 𝑣)))
67 fveq1 5553 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑢) = (𝐹𝑢))
68 fveq1 5553 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑣) = (𝐹𝑣))
6967, 68oveq12d 5936 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑢) (𝑓𝑣)) = ((𝐹𝑢) (𝐹𝑣)))
7066, 69eqeq12d 2208 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)) ↔ (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))))
71702ralbidv 2518 . . . . . 6 (𝑓 = 𝐹 → (∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)) ↔ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))))
7265, 71anbi12d 473 . . . . 5 (𝑓 = 𝐹 → ((𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
7372elab3g 2911 . . . 4 (((𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))) → 𝐹 ∈ V) → (𝐹 ∈ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
7464, 73syl 14 . . 3 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
7559, 74bitrd 188 . 2 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
762, 75biadanii 613 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  {cab 2179  wral 2472  Vcvv 2760  [wsbc 2985  wss 3153   Fn wfn 5249  wf 5250  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  Grpcgrp 13072   GrpHom cghm 13310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-ghm 13311
This theorem is referenced by:  isghm3  13314  ghmgrp1  13315  ghmgrp2  13316  ghmf  13317  ghmlin  13318  isghmd  13322  idghm  13329  ghmf1o  13345  rhmopp  13672  expghmap  14095  mulgghm2  14096
  Copyright terms: Public domain W3C validator