Step | Hyp | Ref
| Expression |
1 | | df-ghm 13173 |
. . 3
⊢ GrpHom =
(𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑓 ∣
[(Base‘𝑠) /
𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢 ∈ 𝑤 ∀𝑣 ∈ 𝑤 (𝑓‘(𝑢(+g‘𝑠)𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣)))}) |
2 | 1 | elmpocl 6087 |
. 2
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp)) |
3 | | isghm.w |
. . . . . . . 8
⊢ 𝑋 = (Base‘𝑆) |
4 | | basfn 12565 |
. . . . . . . . 9
⊢ Base Fn
V |
5 | | elex 2763 |
. . . . . . . . . 10
⊢ (𝑆 ∈ Grp → 𝑆 ∈ V) |
6 | 5 | adantr 276 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝑆 ∈ V) |
7 | | funfvex 5548 |
. . . . . . . . . 10
⊢ ((Fun
Base ∧ 𝑆 ∈ dom
Base) → (Base‘𝑆)
∈ V) |
8 | 7 | funfni 5332 |
. . . . . . . . 9
⊢ ((Base Fn
V ∧ 𝑆 ∈ V) →
(Base‘𝑆) ∈
V) |
9 | 4, 6, 8 | sylancr 414 |
. . . . . . . 8
⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) →
(Base‘𝑆) ∈
V) |
10 | 3, 9 | eqeltrid 2276 |
. . . . . . 7
⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝑋 ∈ V) |
11 | | isghm.x |
. . . . . . . 8
⊢ 𝑌 = (Base‘𝑇) |
12 | | elex 2763 |
. . . . . . . . . 10
⊢ (𝑇 ∈ Grp → 𝑇 ∈ V) |
13 | 12 | adantl 277 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝑇 ∈ V) |
14 | | funfvex 5548 |
. . . . . . . . . 10
⊢ ((Fun
Base ∧ 𝑇 ∈ dom
Base) → (Base‘𝑇)
∈ V) |
15 | 14 | funfni 5332 |
. . . . . . . . 9
⊢ ((Base Fn
V ∧ 𝑇 ∈ V) →
(Base‘𝑇) ∈
V) |
16 | 4, 13, 15 | sylancr 414 |
. . . . . . . 8
⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) →
(Base‘𝑇) ∈
V) |
17 | 11, 16 | eqeltrid 2276 |
. . . . . . 7
⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝑌 ∈ V) |
18 | | mapex 6675 |
. . . . . . 7
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {𝑓 ∣ 𝑓:𝑋⟶𝑌} ∈ V) |
19 | 10, 17, 18 | syl2anc 411 |
. . . . . 6
⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → {𝑓 ∣ 𝑓:𝑋⟶𝑌} ∈ V) |
20 | | simpl 109 |
. . . . . . . 8
⊢ ((𝑓:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢) ⨣ (𝑓‘𝑣))) → 𝑓:𝑋⟶𝑌) |
21 | 20 | ss2abi 3242 |
. . . . . . 7
⊢ {𝑓 ∣ (𝑓:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢) ⨣ (𝑓‘𝑣)))} ⊆ {𝑓 ∣ 𝑓:𝑋⟶𝑌} |
22 | 21 | a1i 9 |
. . . . . 6
⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → {𝑓 ∣ (𝑓:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢) ⨣ (𝑓‘𝑣)))} ⊆ {𝑓 ∣ 𝑓:𝑋⟶𝑌}) |
23 | 19, 22 | ssexd 4158 |
. . . . 5
⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → {𝑓 ∣ (𝑓:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢) ⨣ (𝑓‘𝑣)))} ∈ V) |
24 | | vex 2755 |
. . . . . . . . . 10
⊢ 𝑠 ∈ V |
25 | | funfvex 5548 |
. . . . . . . . . . 11
⊢ ((Fun
Base ∧ 𝑠 ∈ dom
Base) → (Base‘𝑠)
∈ V) |
26 | 25 | funfni 5332 |
. . . . . . . . . 10
⊢ ((Base Fn
V ∧ 𝑠 ∈ V) →
(Base‘𝑠) ∈
V) |
27 | 4, 24, 26 | mp2an 426 |
. . . . . . . . 9
⊢
(Base‘𝑠)
∈ V |
28 | | feq2 5365 |
. . . . . . . . . 10
⊢ (𝑤 = (Base‘𝑠) → (𝑓:𝑤⟶(Base‘𝑡) ↔ 𝑓:(Base‘𝑠)⟶(Base‘𝑡))) |
29 | | raleq 2686 |
. . . . . . . . . . 11
⊢ (𝑤 = (Base‘𝑠) → (∀𝑣 ∈ 𝑤 (𝑓‘(𝑢(+g‘𝑠)𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣)) ↔ ∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g‘𝑠)𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣)))) |
30 | 29 | raleqbi1dv 2694 |
. . . . . . . . . 10
⊢ (𝑤 = (Base‘𝑠) → (∀𝑢 ∈ 𝑤 ∀𝑣 ∈ 𝑤 (𝑓‘(𝑢(+g‘𝑠)𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣)) ↔ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g‘𝑠)𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣)))) |
31 | 28, 30 | anbi12d 473 |
. . . . . . . . 9
⊢ (𝑤 = (Base‘𝑠) → ((𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢 ∈ 𝑤 ∀𝑣 ∈ 𝑤 (𝑓‘(𝑢(+g‘𝑠)𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣))) ↔ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g‘𝑠)𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣))))) |
32 | 27, 31 | sbcie 3012 |
. . . . . . . 8
⊢
([(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢 ∈ 𝑤 ∀𝑣 ∈ 𝑤 (𝑓‘(𝑢(+g‘𝑠)𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣))) ↔ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g‘𝑠)𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣)))) |
33 | | fveq2 5531 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆)) |
34 | 33, 3 | eqtr4di 2240 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑆 → (Base‘𝑠) = 𝑋) |
35 | 34 | feq2d 5369 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ↔ 𝑓:𝑋⟶(Base‘𝑡))) |
36 | | fveq2 5531 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑆 → (+g‘𝑠) = (+g‘𝑆)) |
37 | | isghm.a |
. . . . . . . . . . . . . 14
⊢ + =
(+g‘𝑆) |
38 | 36, 37 | eqtr4di 2240 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑆 → (+g‘𝑠) = + ) |
39 | 38 | oveqd 5909 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑆 → (𝑢(+g‘𝑠)𝑣) = (𝑢 + 𝑣)) |
40 | 39 | fveqeq2d 5539 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑆 → ((𝑓‘(𝑢(+g‘𝑠)𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣)) ↔ (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣)))) |
41 | 34, 40 | raleqbidv 2698 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑆 → (∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g‘𝑠)𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣)) ↔ ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣)))) |
42 | 34, 41 | raleqbidv 2698 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → (∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g‘𝑠)𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣)) ↔ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣)))) |
43 | 35, 42 | anbi12d 473 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → ((𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g‘𝑠)𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣))) ↔ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣))))) |
44 | 32, 43 | bitrid 192 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → ([(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢 ∈ 𝑤 ∀𝑣 ∈ 𝑤 (𝑓‘(𝑢(+g‘𝑠)𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣))) ↔ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣))))) |
45 | 44 | abbidv 2307 |
. . . . . 6
⊢ (𝑠 = 𝑆 → {𝑓 ∣ [(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢 ∈ 𝑤 ∀𝑣 ∈ 𝑤 (𝑓‘(𝑢(+g‘𝑠)𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣)))} = {𝑓 ∣ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣)))}) |
46 | | fveq2 5531 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → (Base‘𝑡) = (Base‘𝑇)) |
47 | 46, 11 | eqtr4di 2240 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → (Base‘𝑡) = 𝑌) |
48 | 47 | feq3d 5370 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → (𝑓:𝑋⟶(Base‘𝑡) ↔ 𝑓:𝑋⟶𝑌)) |
49 | | fveq2 5531 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑇 → (+g‘𝑡) = (+g‘𝑇)) |
50 | | isghm.b |
. . . . . . . . . . . 12
⊢ ⨣ =
(+g‘𝑇) |
51 | 49, 50 | eqtr4di 2240 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → (+g‘𝑡) = ⨣ ) |
52 | 51 | oveqd 5909 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣)) = ((𝑓‘𝑢) ⨣ (𝑓‘𝑣))) |
53 | 52 | eqeq2d 2201 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → ((𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣)) ↔ (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢) ⨣ (𝑓‘𝑣)))) |
54 | 53 | 2ralbidv 2514 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → (∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣)) ↔ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢) ⨣ (𝑓‘𝑣)))) |
55 | 48, 54 | anbi12d 473 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → ((𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣))) ↔ (𝑓:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢) ⨣ (𝑓‘𝑣))))) |
56 | 55 | abbidv 2307 |
. . . . . 6
⊢ (𝑡 = 𝑇 → {𝑓 ∣ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢)(+g‘𝑡)(𝑓‘𝑣)))} = {𝑓 ∣ (𝑓:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢) ⨣ (𝑓‘𝑣)))}) |
57 | 45, 56, 1 | ovmpog 6027 |
. . . . 5
⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ {𝑓 ∣ (𝑓:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢) ⨣ (𝑓‘𝑣)))} ∈ V) → (𝑆 GrpHom 𝑇) = {𝑓 ∣ (𝑓:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢) ⨣ (𝑓‘𝑣)))}) |
58 | 23, 57 | mpd3an3 1349 |
. . . 4
⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = {𝑓 ∣ (𝑓:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢) ⨣ (𝑓‘𝑣)))}) |
59 | 58 | eleq2d 2259 |
. . 3
⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢) ⨣ (𝑓‘𝑣)))})) |
60 | | simpr 110 |
. . . . . . 7
⊢ (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝐹:𝑋⟶𝑌) → 𝐹:𝑋⟶𝑌) |
61 | 10 | adantr 276 |
. . . . . . 7
⊢ (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝐹:𝑋⟶𝑌) → 𝑋 ∈ V) |
62 | 60, 61 | fexd 5763 |
. . . . . 6
⊢ (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝐹:𝑋⟶𝑌) → 𝐹 ∈ V) |
63 | 62 | ex 115 |
. . . . 5
⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹:𝑋⟶𝑌 → 𝐹 ∈ V)) |
64 | 63 | adantrd 279 |
. . . 4
⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))) → 𝐹 ∈ V)) |
65 | | feq1 5364 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (𝑓:𝑋⟶𝑌 ↔ 𝐹:𝑋⟶𝑌)) |
66 | | fveq1 5530 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑢 + 𝑣)) = (𝐹‘(𝑢 + 𝑣))) |
67 | | fveq1 5530 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘𝑢) = (𝐹‘𝑢)) |
68 | | fveq1 5530 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘𝑣) = (𝐹‘𝑣)) |
69 | 67, 68 | oveq12d 5910 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑢) ⨣ (𝑓‘𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))) |
70 | 66, 69 | eqeq12d 2204 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ((𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢) ⨣ (𝑓‘𝑣)) ↔ (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣)))) |
71 | 70 | 2ralbidv 2514 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢) ⨣ (𝑓‘𝑣)) ↔ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣)))) |
72 | 65, 71 | anbi12d 473 |
. . . . 5
⊢ (𝑓 = 𝐹 → ((𝑓:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢) ⨣ (𝑓‘𝑣))) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))))) |
73 | 72 | elab3g 2903 |
. . . 4
⊢ (((𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))) → 𝐹 ∈ V) → (𝐹 ∈ {𝑓 ∣ (𝑓:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢) ⨣ (𝑓‘𝑣)))} ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))))) |
74 | 64, 73 | syl 14 |
. . 3
⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ {𝑓 ∣ (𝑓:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓‘𝑢) ⨣ (𝑓‘𝑣)))} ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))))) |
75 | 59, 74 | bitrd 188 |
. 2
⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))))) |
76 | 2, 75 | biadanii 613 |
1
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))))) |