ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq2d GIF version

Theorem feq2d 5355
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
feq2d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
feq2d (𝜑 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))

Proof of Theorem feq2d
StepHypRef Expression
1 feq2d.1 . 2 (𝜑𝐴 = 𝐵)
2 feq2 5351 . 2 (𝐴 = 𝐵 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))
31, 2syl 14 1 (𝜑 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  wf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-4 1510  ax-17 1526  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-fn 5221  df-f 5222
This theorem is referenced by:  feq12d  5357  ffdm  5388  fsng  5691  issmo2  6292  qliftf  6622  elpm2r  6668  casef  7089  fseq1p1m1  10096  fseq1m1p1  10097  seqf  10463  seqf2  10466  intopsn  12791  lmtopcnp  13835  ellimc3apf  14214  dvidlemap  14245  dviaddf  14254  dvimulf  14255  dvcjbr  14257  dvcj  14258  dvrecap  14262  dvmptclx  14265
  Copyright terms: Public domain W3C validator