ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq2d GIF version

Theorem feq2d 5325
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
feq2d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
feq2d (𝜑 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))

Proof of Theorem feq2d
StepHypRef Expression
1 feq2d.1 . 2 (𝜑𝐴 = 𝐵)
2 feq2 5321 . 2 (𝐴 = 𝐵 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))
31, 2syl 14 1 (𝜑 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-fn 5191  df-f 5192
This theorem is referenced by:  feq12d  5327  ffdm  5358  fsng  5658  issmo2  6257  qliftf  6586  elpm2r  6632  casef  7053  fseq1p1m1  10029  fseq1m1p1  10030  seqf  10396  seqf2  10399  intopsn  12598  lmtopcnp  12900  ellimc3apf  13279  dvidlemap  13310  dviaddf  13319  dvimulf  13320  dvcjbr  13322  dvcj  13323  dvrecap  13327  dvmptclx  13330
  Copyright terms: Public domain W3C validator