Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > feq2d | GIF version |
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
feq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
feq2d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | feq2 5321 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ⟶wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-fn 5191 df-f 5192 |
This theorem is referenced by: feq12d 5327 ffdm 5358 fsng 5658 issmo2 6257 qliftf 6586 elpm2r 6632 casef 7053 fseq1p1m1 10029 fseq1m1p1 10030 seqf 10396 seqf2 10399 intopsn 12598 lmtopcnp 12900 ellimc3apf 13279 dvidlemap 13310 dviaddf 13319 dvimulf 13320 dvcjbr 13322 dvcj 13323 dvrecap 13327 dvmptclx 13330 |
Copyright terms: Public domain | W3C validator |