![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > feq2d | GIF version |
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
feq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
feq2d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | feq2 5388 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ⟶wf 5251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-fn 5258 df-f 5259 |
This theorem is referenced by: feq12d 5394 ffdm 5425 fsng 5732 issmo2 6344 qliftf 6676 elpm2r 6722 casef 7149 fseq1p1m1 10163 fseq1m1p1 10164 seqf 10538 seqf2 10542 seqf1og 10595 iswrdinn0 10922 wrdf 10923 iswrdiz 10924 wrdffz 10938 wrdnval 10947 intopsn 12953 gsumprval 12985 resmhm 13062 gsumwsubmcl 13071 gsumwmhm 13073 isghm 13316 resghm 13333 lmtopcnp 14429 ellimc3apf 14839 dvidlemap 14870 dvidrelem 14871 dvidsslem 14872 dviaddf 14884 dvimulf 14885 dvcjbr 14887 dvcj 14888 dvrecap 14892 dvmptclx 14897 |
Copyright terms: Public domain | W3C validator |