Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > feq2d | GIF version |
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
feq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
feq2d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | feq2 5329 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ⟶wf 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-fn 5199 df-f 5200 |
This theorem is referenced by: feq12d 5335 ffdm 5366 fsng 5667 issmo2 6266 qliftf 6596 elpm2r 6642 casef 7063 fseq1p1m1 10043 fseq1m1p1 10044 seqf 10410 seqf2 10413 intopsn 12614 lmtopcnp 13009 ellimc3apf 13388 dvidlemap 13419 dviaddf 13428 dvimulf 13429 dvcjbr 13431 dvcj 13432 dvrecap 13436 dvmptclx 13439 |
Copyright terms: Public domain | W3C validator |