| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq2d | GIF version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| feq2d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | feq2 5457 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ⟶wf 5314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-fn 5321 df-f 5322 |
| This theorem is referenced by: feq12d 5463 ffdm 5496 fsng 5810 issmo2 6441 qliftf 6775 elpm2r 6821 casef 7263 fseq1p1m1 10298 fseq1m1p1 10299 seqf 10694 seqf2 10698 seqf1og 10751 iswrdinn0 11084 wrdf 11085 iswrdiz 11086 wrdffz 11100 ffz0iswrdnn0 11106 wrdnval 11110 swrdf 11195 swrdwrdsymbg 11204 cats1un 11261 s2dmg 11330 intopsn 13408 gsumprval 13440 resmhm 13528 gsumwsubmcl 13537 gsumwmhm 13539 isghm 13788 resghm 13805 psrelbasfi 14648 lmtopcnp 14932 ellimc3apf 15342 dvidlemap 15373 dvidrelem 15374 dvidsslem 15375 dviaddf 15387 dvimulf 15388 dvcjbr 15390 dvcj 15391 dvrecap 15395 dvmptclx 15400 uhgrm 15886 wrdupgren 15904 upgrfnen 15906 wrdumgren 15914 umgrfnen 15916 upgr2wlkdc 16096 wlkres 16098 |
| Copyright terms: Public domain | W3C validator |