| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq2d | GIF version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| feq2d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | feq2 5394 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ⟶wf 5255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-fn 5262 df-f 5263 |
| This theorem is referenced by: feq12d 5400 ffdm 5431 fsng 5738 issmo2 6356 qliftf 6688 elpm2r 6734 casef 7163 fseq1p1m1 10188 fseq1m1p1 10189 seqf 10575 seqf2 10579 seqf1og 10632 iswrdinn0 10959 wrdf 10960 iswrdiz 10961 wrdffz 10975 wrdnval 10984 intopsn 13071 gsumprval 13103 resmhm 13191 gsumwsubmcl 13200 gsumwmhm 13202 isghm 13451 resghm 13468 psrelbasfi 14310 lmtopcnp 14594 ellimc3apf 15004 dvidlemap 15035 dvidrelem 15036 dvidsslem 15037 dviaddf 15049 dvimulf 15050 dvcjbr 15052 dvcj 15053 dvrecap 15057 dvmptclx 15062 |
| Copyright terms: Public domain | W3C validator |