| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq2d | GIF version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| feq2d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | feq2 5394 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ⟶wf 5255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-fn 5262 df-f 5263 |
| This theorem is referenced by: feq12d 5400 ffdm 5431 fsng 5738 issmo2 6356 qliftf 6688 elpm2r 6734 casef 7163 fseq1p1m1 10186 fseq1m1p1 10187 seqf 10573 seqf2 10577 seqf1og 10630 iswrdinn0 10957 wrdf 10958 iswrdiz 10959 wrdffz 10973 wrdnval 10982 intopsn 13069 gsumprval 13101 resmhm 13189 gsumwsubmcl 13198 gsumwmhm 13200 isghm 13449 resghm 13466 lmtopcnp 14570 ellimc3apf 14980 dvidlemap 15011 dvidrelem 15012 dvidsslem 15013 dviaddf 15025 dvimulf 15026 dvcjbr 15028 dvcj 15029 dvrecap 15033 dvmptclx 15038 |
| Copyright terms: Public domain | W3C validator |