| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq2d | GIF version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| feq2d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | feq2 5392 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ⟶wf 5255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-fn 5262 df-f 5263 |
| This theorem is referenced by: feq12d 5398 ffdm 5429 fsng 5736 issmo2 6348 qliftf 6680 elpm2r 6726 casef 7155 fseq1p1m1 10171 fseq1m1p1 10172 seqf 10558 seqf2 10562 seqf1og 10615 iswrdinn0 10942 wrdf 10943 iswrdiz 10944 wrdffz 10958 wrdnval 10967 intopsn 13020 gsumprval 13052 resmhm 13129 gsumwsubmcl 13138 gsumwmhm 13140 isghm 13383 resghm 13400 lmtopcnp 14496 ellimc3apf 14906 dvidlemap 14937 dvidrelem 14938 dvidsslem 14939 dviaddf 14951 dvimulf 14952 dvcjbr 14954 dvcj 14955 dvrecap 14959 dvmptclx 14964 |
| Copyright terms: Public domain | W3C validator |