| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq2d | GIF version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| feq2d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | feq2 5433 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 ⟶wf 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-gen 1475 ax-4 1536 ax-17 1552 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-cleq 2202 df-fn 5297 df-f 5298 |
| This theorem is referenced by: feq12d 5439 ffdm 5470 fsng 5781 issmo2 6405 qliftf 6737 elpm2r 6783 casef 7223 fseq1p1m1 10258 fseq1m1p1 10259 seqf 10653 seqf2 10657 seqf1og 10710 iswrdinn0 11043 wrdf 11044 iswrdiz 11045 wrdffz 11059 wrdnval 11068 swrdf 11153 swrdwrdsymbg 11162 cats1un 11219 s2dmg 11288 intopsn 13366 gsumprval 13398 resmhm 13486 gsumwsubmcl 13495 gsumwmhm 13497 isghm 13746 resghm 13763 psrelbasfi 14605 lmtopcnp 14889 ellimc3apf 15299 dvidlemap 15330 dvidrelem 15331 dvidsslem 15332 dviaddf 15344 dvimulf 15345 dvcjbr 15347 dvcj 15348 dvrecap 15352 dvmptclx 15357 uhgrm 15843 wrdupgren 15861 upgrfnen 15863 wrdumgren 15871 umgrfnen 15873 |
| Copyright terms: Public domain | W3C validator |