ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq2d GIF version

Theorem feq2d 5396
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
feq2d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
feq2d (𝜑 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))

Proof of Theorem feq2d
StepHypRef Expression
1 feq2d.1 . 2 (𝜑𝐴 = 𝐵)
2 feq2 5392 . 2 (𝐴 = 𝐵 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))
31, 2syl 14 1 (𝜑 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wf 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-fn 5262  df-f 5263
This theorem is referenced by:  feq12d  5398  ffdm  5429  fsng  5736  issmo2  6348  qliftf  6680  elpm2r  6726  casef  7155  fseq1p1m1  10171  fseq1m1p1  10172  seqf  10558  seqf2  10562  seqf1og  10615  iswrdinn0  10942  wrdf  10943  iswrdiz  10944  wrdffz  10958  wrdnval  10967  intopsn  13020  gsumprval  13052  resmhm  13129  gsumwsubmcl  13138  gsumwmhm  13140  isghm  13383  resghm  13400  lmtopcnp  14496  ellimc3apf  14906  dvidlemap  14937  dvidrelem  14938  dvidsslem  14939  dviaddf  14951  dvimulf  14952  dvcjbr  14954  dvcj  14955  dvrecap  14959  dvmptclx  14964
  Copyright terms: Public domain W3C validator