| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq2d | GIF version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| feq2d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | feq2 5415 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ⟶wf 5272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-fn 5279 df-f 5280 |
| This theorem is referenced by: feq12d 5421 ffdm 5452 fsng 5760 issmo2 6382 qliftf 6714 elpm2r 6760 casef 7197 fseq1p1m1 10223 fseq1m1p1 10224 seqf 10616 seqf2 10620 seqf1og 10673 iswrdinn0 11006 wrdf 11007 iswrdiz 11008 wrdffz 11022 wrdnval 11031 swrdf 11116 swrdwrdsymbg 11125 intopsn 13243 gsumprval 13275 resmhm 13363 gsumwsubmcl 13372 gsumwmhm 13374 isghm 13623 resghm 13640 psrelbasfi 14482 lmtopcnp 14766 ellimc3apf 15176 dvidlemap 15207 dvidrelem 15208 dvidsslem 15209 dviaddf 15221 dvimulf 15222 dvcjbr 15224 dvcj 15225 dvrecap 15229 dvmptclx 15234 uhgrm 15718 |
| Copyright terms: Public domain | W3C validator |