Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssomct | GIF version |
Description: A decidable subset of ω is countable. (Contributed by Jim Kingdon, 19-Sep-2024.) |
Ref | Expression |
---|---|
ssomct | ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4577 | . . . . 5 ⊢ ω ∈ V | |
2 | 1 | ssex 4126 | . . . 4 ⊢ (𝐴 ⊆ ω → 𝐴 ∈ V) |
3 | 2 | adantr 274 | . . 3 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → 𝐴 ∈ V) |
4 | simpl 108 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → 𝐴 ⊆ ω) | |
5 | resiexg 4936 | . . . . . . 7 ⊢ (𝐴 ∈ V → ( I ↾ 𝐴) ∈ V) | |
6 | 2, 5 | syl 14 | . . . . . 6 ⊢ (𝐴 ⊆ ω → ( I ↾ 𝐴) ∈ V) |
7 | 6 | adantr 274 | . . . . 5 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ( I ↾ 𝐴) ∈ V) |
8 | f1oi 5480 | . . . . . 6 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
9 | f1ofo 5449 | . . . . . 6 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 → ( I ↾ 𝐴):𝐴–onto→𝐴) | |
10 | 8, 9 | mp1i 10 | . . . . 5 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ( I ↾ 𝐴):𝐴–onto→𝐴) |
11 | foeq1 5416 | . . . . 5 ⊢ (𝑓 = ( I ↾ 𝐴) → (𝑓:𝐴–onto→𝐴 ↔ ( I ↾ 𝐴):𝐴–onto→𝐴)) | |
12 | 7, 10, 11 | elabd 2875 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ∃𝑓 𝑓:𝐴–onto→𝐴) |
13 | simpr 109 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) | |
14 | 4, 12, 13 | 3jca 1172 | . . 3 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → (𝐴 ⊆ ω ∧ ∃𝑓 𝑓:𝐴–onto→𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴)) |
15 | sseq1 3170 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ⊆ ω ↔ 𝐴 ⊆ ω)) | |
16 | foeq2 5417 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑓:𝑦–onto→𝐴 ↔ 𝑓:𝐴–onto→𝐴)) | |
17 | 16 | exbidv 1818 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑓 𝑓:𝑦–onto→𝐴 ↔ ∃𝑓 𝑓:𝐴–onto→𝐴)) |
18 | eleq2 2234 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
19 | 18 | dcbid 833 | . . . . 5 ⊢ (𝑦 = 𝐴 → (DECID 𝑥 ∈ 𝑦 ↔ DECID 𝑥 ∈ 𝐴)) |
20 | 19 | ralbidv 2470 | . . . 4 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ ω DECID 𝑥 ∈ 𝑦 ↔ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴)) |
21 | 15, 17, 20 | 3anbi123d 1307 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦–onto→𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝑦) ↔ (𝐴 ⊆ ω ∧ ∃𝑓 𝑓:𝐴–onto→𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴))) |
22 | 3, 14, 21 | elabd 2875 | . 2 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ∃𝑦(𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦–onto→𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝑦)) |
23 | ctssdc 7090 | . 2 ⊢ (∃𝑦(𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦–onto→𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝑦) ↔ ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)) | |
24 | 22, 23 | sylib 121 | 1 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 DECID wdc 829 ∧ w3a 973 = wceq 1348 ∃wex 1485 ∈ wcel 2141 ∀wral 2448 Vcvv 2730 ⊆ wss 3121 I cid 4273 ωcom 4574 ↾ cres 4613 –onto→wfo 5196 –1-1-onto→wf1o 5197 1oc1o 6388 ⊔ cdju 7014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-dju 7015 df-inl 7024 df-inr 7025 df-case 7061 |
This theorem is referenced by: ssnnctlemct 12401 |
Copyright terms: Public domain | W3C validator |