Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssomct | GIF version |
Description: A decidable subset of ω is countable. (Contributed by Jim Kingdon, 19-Sep-2024.) |
Ref | Expression |
---|---|
ssomct | ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4569 | . . . . 5 ⊢ ω ∈ V | |
2 | 1 | ssex 4118 | . . . 4 ⊢ (𝐴 ⊆ ω → 𝐴 ∈ V) |
3 | 2 | adantr 274 | . . 3 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → 𝐴 ∈ V) |
4 | simpl 108 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → 𝐴 ⊆ ω) | |
5 | resiexg 4928 | . . . . . . 7 ⊢ (𝐴 ∈ V → ( I ↾ 𝐴) ∈ V) | |
6 | 2, 5 | syl 14 | . . . . . 6 ⊢ (𝐴 ⊆ ω → ( I ↾ 𝐴) ∈ V) |
7 | 6 | adantr 274 | . . . . 5 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ( I ↾ 𝐴) ∈ V) |
8 | f1oi 5469 | . . . . . 6 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
9 | f1ofo 5438 | . . . . . 6 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 → ( I ↾ 𝐴):𝐴–onto→𝐴) | |
10 | 8, 9 | mp1i 10 | . . . . 5 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ( I ↾ 𝐴):𝐴–onto→𝐴) |
11 | foeq1 5405 | . . . . 5 ⊢ (𝑓 = ( I ↾ 𝐴) → (𝑓:𝐴–onto→𝐴 ↔ ( I ↾ 𝐴):𝐴–onto→𝐴)) | |
12 | 7, 10, 11 | elabd 2870 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ∃𝑓 𝑓:𝐴–onto→𝐴) |
13 | simpr 109 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) | |
14 | 4, 12, 13 | 3jca 1167 | . . 3 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → (𝐴 ⊆ ω ∧ ∃𝑓 𝑓:𝐴–onto→𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴)) |
15 | sseq1 3164 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ⊆ ω ↔ 𝐴 ⊆ ω)) | |
16 | foeq2 5406 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑓:𝑦–onto→𝐴 ↔ 𝑓:𝐴–onto→𝐴)) | |
17 | 16 | exbidv 1813 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑓 𝑓:𝑦–onto→𝐴 ↔ ∃𝑓 𝑓:𝐴–onto→𝐴)) |
18 | eleq2 2229 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
19 | 18 | dcbid 828 | . . . . 5 ⊢ (𝑦 = 𝐴 → (DECID 𝑥 ∈ 𝑦 ↔ DECID 𝑥 ∈ 𝐴)) |
20 | 19 | ralbidv 2465 | . . . 4 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ ω DECID 𝑥 ∈ 𝑦 ↔ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴)) |
21 | 15, 17, 20 | 3anbi123d 1302 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦–onto→𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝑦) ↔ (𝐴 ⊆ ω ∧ ∃𝑓 𝑓:𝐴–onto→𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴))) |
22 | 3, 14, 21 | elabd 2870 | . 2 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ∃𝑦(𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦–onto→𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝑦)) |
23 | ctssdc 7074 | . 2 ⊢ (∃𝑦(𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦–onto→𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝑦) ↔ ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)) | |
24 | 22, 23 | sylib 121 | 1 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 DECID wdc 824 ∧ w3a 968 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ∀wral 2443 Vcvv 2725 ⊆ wss 3115 I cid 4265 ωcom 4566 ↾ cres 4605 –onto→wfo 5185 –1-1-onto→wf1o 5186 1oc1o 6373 ⊔ cdju 6998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-iinf 4564 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-if 3520 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-iord 4343 df-on 4345 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-1st 6105 df-2nd 6106 df-1o 6380 df-dju 6999 df-inl 7008 df-inr 7009 df-case 7045 |
This theorem is referenced by: ssnnctlemct 12375 |
Copyright terms: Public domain | W3C validator |