| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssomct | GIF version | ||
| Description: A decidable subset of ω is countable. (Contributed by Jim Kingdon, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| ssomct | ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 4630 | . . . . 5 ⊢ ω ∈ V | |
| 2 | 1 | ssex 4171 | . . . 4 ⊢ (𝐴 ⊆ ω → 𝐴 ∈ V) |
| 3 | 2 | adantr 276 | . . 3 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → 𝐴 ∈ V) |
| 4 | simpl 109 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → 𝐴 ⊆ ω) | |
| 5 | resiexg 4992 | . . . . . . 7 ⊢ (𝐴 ∈ V → ( I ↾ 𝐴) ∈ V) | |
| 6 | 2, 5 | syl 14 | . . . . . 6 ⊢ (𝐴 ⊆ ω → ( I ↾ 𝐴) ∈ V) |
| 7 | 6 | adantr 276 | . . . . 5 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ( I ↾ 𝐴) ∈ V) |
| 8 | f1oi 5545 | . . . . . 6 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
| 9 | f1ofo 5514 | . . . . . 6 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 → ( I ↾ 𝐴):𝐴–onto→𝐴) | |
| 10 | 8, 9 | mp1i 10 | . . . . 5 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ( I ↾ 𝐴):𝐴–onto→𝐴) |
| 11 | foeq1 5479 | . . . . 5 ⊢ (𝑓 = ( I ↾ 𝐴) → (𝑓:𝐴–onto→𝐴 ↔ ( I ↾ 𝐴):𝐴–onto→𝐴)) | |
| 12 | 7, 10, 11 | elabd 2909 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ∃𝑓 𝑓:𝐴–onto→𝐴) |
| 13 | simpr 110 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) | |
| 14 | 4, 12, 13 | 3jca 1179 | . . 3 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → (𝐴 ⊆ ω ∧ ∃𝑓 𝑓:𝐴–onto→𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴)) |
| 15 | sseq1 3207 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ⊆ ω ↔ 𝐴 ⊆ ω)) | |
| 16 | foeq2 5480 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑓:𝑦–onto→𝐴 ↔ 𝑓:𝐴–onto→𝐴)) | |
| 17 | 16 | exbidv 1839 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑓 𝑓:𝑦–onto→𝐴 ↔ ∃𝑓 𝑓:𝐴–onto→𝐴)) |
| 18 | eleq2 2260 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
| 19 | 18 | dcbid 839 | . . . . 5 ⊢ (𝑦 = 𝐴 → (DECID 𝑥 ∈ 𝑦 ↔ DECID 𝑥 ∈ 𝐴)) |
| 20 | 19 | ralbidv 2497 | . . . 4 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ ω DECID 𝑥 ∈ 𝑦 ↔ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴)) |
| 21 | 15, 17, 20 | 3anbi123d 1323 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦–onto→𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝑦) ↔ (𝐴 ⊆ ω ∧ ∃𝑓 𝑓:𝐴–onto→𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴))) |
| 22 | 3, 14, 21 | elabd 2909 | . 2 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ∃𝑦(𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦–onto→𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝑦)) |
| 23 | ctssdc 7188 | . 2 ⊢ (∃𝑦(𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦–onto→𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝑦) ↔ ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)) | |
| 24 | 22, 23 | sylib 122 | 1 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 ∧ w3a 980 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ∀wral 2475 Vcvv 2763 ⊆ wss 3157 I cid 4324 ωcom 4627 ↾ cres 4666 –onto→wfo 5257 –1-1-onto→wf1o 5258 1oc1o 6476 ⊔ cdju 7112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-1st 6207 df-2nd 6208 df-1o 6483 df-dju 7113 df-inl 7122 df-inr 7123 df-case 7159 |
| This theorem is referenced by: ssnnctlemct 12688 |
| Copyright terms: Public domain | W3C validator |