ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssomct GIF version

Theorem ssomct 13011
Description: A decidable subset of ω is countable. (Contributed by Jim Kingdon, 19-Sep-2024.)
Assertion
Ref Expression
ssomct ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
Distinct variable group:   𝐴,𝑓,𝑥

Proof of Theorem ssomct
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 omex 4684 . . . . 5 ω ∈ V
21ssex 4220 . . . 4 (𝐴 ⊆ ω → 𝐴 ∈ V)
32adantr 276 . . 3 ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → 𝐴 ∈ V)
4 simpl 109 . . . 4 ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → 𝐴 ⊆ ω)
5 resiexg 5049 . . . . . . 7 (𝐴 ∈ V → ( I ↾ 𝐴) ∈ V)
62, 5syl 14 . . . . . 6 (𝐴 ⊆ ω → ( I ↾ 𝐴) ∈ V)
76adantr 276 . . . . 5 ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → ( I ↾ 𝐴) ∈ V)
8 f1oi 5610 . . . . . 6 ( I ↾ 𝐴):𝐴1-1-onto𝐴
9 f1ofo 5578 . . . . . 6 (( I ↾ 𝐴):𝐴1-1-onto𝐴 → ( I ↾ 𝐴):𝐴onto𝐴)
108, 9mp1i 10 . . . . 5 ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → ( I ↾ 𝐴):𝐴onto𝐴)
11 foeq1 5543 . . . . 5 (𝑓 = ( I ↾ 𝐴) → (𝑓:𝐴onto𝐴 ↔ ( I ↾ 𝐴):𝐴onto𝐴))
127, 10, 11elabd 2948 . . . 4 ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → ∃𝑓 𝑓:𝐴onto𝐴)
13 simpr 110 . . . 4 ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → ∀𝑥 ∈ ω DECID 𝑥𝐴)
144, 12, 133jca 1201 . . 3 ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → (𝐴 ⊆ ω ∧ ∃𝑓 𝑓:𝐴onto𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴))
15 sseq1 3247 . . . 4 (𝑦 = 𝐴 → (𝑦 ⊆ ω ↔ 𝐴 ⊆ ω))
16 foeq2 5544 . . . . 5 (𝑦 = 𝐴 → (𝑓:𝑦onto𝐴𝑓:𝐴onto𝐴))
1716exbidv 1871 . . . 4 (𝑦 = 𝐴 → (∃𝑓 𝑓:𝑦onto𝐴 ↔ ∃𝑓 𝑓:𝐴onto𝐴))
18 eleq2 2293 . . . . . 6 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
1918dcbid 843 . . . . 5 (𝑦 = 𝐴 → (DECID 𝑥𝑦DECID 𝑥𝐴))
2019ralbidv 2530 . . . 4 (𝑦 = 𝐴 → (∀𝑥 ∈ ω DECID 𝑥𝑦 ↔ ∀𝑥 ∈ ω DECID 𝑥𝐴))
2115, 17, 203anbi123d 1346 . . 3 (𝑦 = 𝐴 → ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥𝑦) ↔ (𝐴 ⊆ ω ∧ ∃𝑓 𝑓:𝐴onto𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴)))
223, 14, 21elabd 2948 . 2 ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → ∃𝑦(𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥𝑦))
23 ctssdc 7276 . 2 (∃𝑦(𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥𝑦) ↔ ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
2422, 23sylib 122 1 ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 839  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wral 2508  Vcvv 2799  wss 3197   I cid 4378  ωcom 4681  cres 4720  ontowfo 5315  1-1-ontowf1o 5316  1oc1o 6553  cdju 7200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-2nd 6285  df-1o 6560  df-dju 7201  df-inl 7210  df-inr 7211  df-case 7247
This theorem is referenced by:  ssnnctlemct  13012
  Copyright terms: Public domain W3C validator