ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssomct GIF version

Theorem ssomct 12886
Description: A decidable subset of ω is countable. (Contributed by Jim Kingdon, 19-Sep-2024.)
Assertion
Ref Expression
ssomct ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
Distinct variable group:   𝐴,𝑓,𝑥

Proof of Theorem ssomct
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 omex 4648 . . . . 5 ω ∈ V
21ssex 4188 . . . 4 (𝐴 ⊆ ω → 𝐴 ∈ V)
32adantr 276 . . 3 ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → 𝐴 ∈ V)
4 simpl 109 . . . 4 ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → 𝐴 ⊆ ω)
5 resiexg 5012 . . . . . . 7 (𝐴 ∈ V → ( I ↾ 𝐴) ∈ V)
62, 5syl 14 . . . . . 6 (𝐴 ⊆ ω → ( I ↾ 𝐴) ∈ V)
76adantr 276 . . . . 5 ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → ( I ↾ 𝐴) ∈ V)
8 f1oi 5572 . . . . . 6 ( I ↾ 𝐴):𝐴1-1-onto𝐴
9 f1ofo 5540 . . . . . 6 (( I ↾ 𝐴):𝐴1-1-onto𝐴 → ( I ↾ 𝐴):𝐴onto𝐴)
108, 9mp1i 10 . . . . 5 ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → ( I ↾ 𝐴):𝐴onto𝐴)
11 foeq1 5505 . . . . 5 (𝑓 = ( I ↾ 𝐴) → (𝑓:𝐴onto𝐴 ↔ ( I ↾ 𝐴):𝐴onto𝐴))
127, 10, 11elabd 2922 . . . 4 ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → ∃𝑓 𝑓:𝐴onto𝐴)
13 simpr 110 . . . 4 ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → ∀𝑥 ∈ ω DECID 𝑥𝐴)
144, 12, 133jca 1180 . . 3 ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → (𝐴 ⊆ ω ∧ ∃𝑓 𝑓:𝐴onto𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴))
15 sseq1 3220 . . . 4 (𝑦 = 𝐴 → (𝑦 ⊆ ω ↔ 𝐴 ⊆ ω))
16 foeq2 5506 . . . . 5 (𝑦 = 𝐴 → (𝑓:𝑦onto𝐴𝑓:𝐴onto𝐴))
1716exbidv 1849 . . . 4 (𝑦 = 𝐴 → (∃𝑓 𝑓:𝑦onto𝐴 ↔ ∃𝑓 𝑓:𝐴onto𝐴))
18 eleq2 2270 . . . . . 6 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
1918dcbid 840 . . . . 5 (𝑦 = 𝐴 → (DECID 𝑥𝑦DECID 𝑥𝐴))
2019ralbidv 2507 . . . 4 (𝑦 = 𝐴 → (∀𝑥 ∈ ω DECID 𝑥𝑦 ↔ ∀𝑥 ∈ ω DECID 𝑥𝐴))
2115, 17, 203anbi123d 1325 . . 3 (𝑦 = 𝐴 → ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥𝑦) ↔ (𝐴 ⊆ ω ∧ ∃𝑓 𝑓:𝐴onto𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴)))
223, 14, 21elabd 2922 . 2 ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → ∃𝑦(𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥𝑦))
23 ctssdc 7229 . 2 (∃𝑦(𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝐴 ∧ ∀𝑥 ∈ ω DECID 𝑥𝑦) ↔ ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
2422, 23sylib 122 1 ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836  w3a 981   = wceq 1373  wex 1516  wcel 2177  wral 2485  Vcvv 2773  wss 3170   I cid 4342  ωcom 4645  cres 4684  ontowfo 5277  1-1-ontowf1o 5278  1oc1o 6507  cdju 7153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-iinf 4643
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-1st 6238  df-2nd 6239  df-1o 6514  df-dju 7154  df-inl 7163  df-inr 7164  df-case 7200
This theorem is referenced by:  ssnnctlemct  12887
  Copyright terms: Public domain W3C validator