![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tposfo | GIF version |
Description: The domain and codomain/range of a transposition. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposfo | ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 4768 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
2 | tposfo2 6320 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → (𝐹:(𝐴 × 𝐵)–onto→𝐶 → tpos 𝐹:◡(𝐴 × 𝐵)–onto→𝐶)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 → tpos 𝐹:◡(𝐴 × 𝐵)–onto→𝐶) |
4 | cnvxp 5084 | . . 3 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
5 | foeq2 5473 | . . 3 ⊢ (◡(𝐴 × 𝐵) = (𝐵 × 𝐴) → (tpos 𝐹:◡(𝐴 × 𝐵)–onto→𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)–onto→𝐶)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (tpos 𝐹:◡(𝐴 × 𝐵)–onto→𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)–onto→𝐶) |
7 | 3, 6 | sylib 122 | 1 ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto→𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 × cxp 4657 ◡ccnv 4658 Rel wrel 4664 –onto→wfo 5252 tpos ctpos 6297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-fo 5260 df-fv 5262 df-tpos 6298 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |