ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposfo GIF version

Theorem tposfo 5971
Description: The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposfo (𝐹:(𝐴 × 𝐵)–onto𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto𝐶)

Proof of Theorem tposfo
StepHypRef Expression
1 relxp 4508 . . 3 Rel (𝐴 × 𝐵)
2 tposfo2 5967 . . 3 (Rel (𝐴 × 𝐵) → (𝐹:(𝐴 × 𝐵)–onto𝐶 → tpos 𝐹:(𝐴 × 𝐵)–onto𝐶))
31, 2ax-mp 7 . 2 (𝐹:(𝐴 × 𝐵)–onto𝐶 → tpos 𝐹:(𝐴 × 𝐵)–onto𝐶)
4 cnvxp 4807 . . 3 (𝐴 × 𝐵) = (𝐵 × 𝐴)
5 foeq2 5181 . . 3 ((𝐴 × 𝐵) = (𝐵 × 𝐴) → (tpos 𝐹:(𝐴 × 𝐵)–onto𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)–onto𝐶))
64, 5ax-mp 7 . 2 (tpos 𝐹:(𝐴 × 𝐵)–onto𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)–onto𝐶)
73, 6sylib 120 1 (𝐹:(𝐴 × 𝐵)–onto𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1287   × cxp 4402  ccnv 4403  Rel wrel 4409  ontowfo 4970  tpos ctpos 5944
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-nul 3933  ax-pow 3977  ax-pr 4003  ax-un 4227
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2616  df-sbc 2829  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-nul 3273  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-br 3815  df-opab 3869  df-mpt 3870  df-id 4087  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-dm 4414  df-rn 4415  df-res 4416  df-ima 4417  df-iota 4937  df-fun 4974  df-fn 4975  df-fo 4978  df-fv 4980  df-tpos 5945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator