| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tposfo | GIF version | ||
| Description: The domain and codomain/range of a transposition. (Contributed by NM, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tposfo | ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 4828 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
| 2 | tposfo2 6419 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → (𝐹:(𝐴 × 𝐵)–onto→𝐶 → tpos 𝐹:◡(𝐴 × 𝐵)–onto→𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 → tpos 𝐹:◡(𝐴 × 𝐵)–onto→𝐶) |
| 4 | cnvxp 5147 | . . 3 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
| 5 | foeq2 5547 | . . 3 ⊢ (◡(𝐴 × 𝐵) = (𝐵 × 𝐴) → (tpos 𝐹:◡(𝐴 × 𝐵)–onto→𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)–onto→𝐶)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (tpos 𝐹:◡(𝐴 × 𝐵)–onto→𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)–onto→𝐶) |
| 7 | 3, 6 | sylib 122 | 1 ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto→𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 × cxp 4717 ◡ccnv 4718 Rel wrel 4724 –onto→wfo 5316 tpos ctpos 6396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-fo 5324 df-fv 5326 df-tpos 6397 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |