Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > foeq123d | GIF version |
Description: Equality deduction for onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
f1eq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
f1eq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
f1eq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
foeq123d | ⊢ (𝜑 → (𝐹:𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | foeq1 5406 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–onto→𝐶 ↔ 𝐺:𝐴–onto→𝐶)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → (𝐹:𝐴–onto→𝐶 ↔ 𝐺:𝐴–onto→𝐶)) |
4 | f1eq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | foeq2 5407 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐺:𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝜑 → (𝐺:𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) |
7 | f1eq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
8 | foeq3 5408 | . . 3 ⊢ (𝐶 = 𝐷 → (𝐺:𝐵–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐷)) | |
9 | 7, 8 | syl 14 | . 2 ⊢ (𝜑 → (𝐺:𝐵–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐷)) |
10 | 3, 6, 9 | 3bitrd 213 | 1 ⊢ (𝜑 → (𝐹:𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 –onto→wfo 5186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-fo 5194 |
This theorem is referenced by: ctssexmid 7114 ctiunctal 12374 unct 12375 |
Copyright terms: Public domain | W3C validator |