ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunct GIF version

Theorem ctiunct 12855
Description: A sequence of enumerations gives an enumeration of the union. We refer to "sequence of enumerations" rather than "countably many countable sets" because the hypothesis provides more than countability for each 𝐵(𝑥): it refers to 𝐵(𝑥) together with the 𝐺(𝑥) which enumerates it. Theorem 8.1.19 of [AczelRathjen], p. 74.

For "countably many countable sets" the key hypothesis would be (𝜑𝑥𝐴) → ∃𝑔𝑔:ω–onto→(𝐵 ⊔ 1o). This is almost omiunct 12859 (which uses countable choice) although that is for a countably infinite collection not any countable collection.

Compare with the case of two sets instead of countably many, as seen at unct 12857, which says that the union of two countable sets is countable .

The proof proceeds by mapping a natural number to a pair of natural numbers (by xpomen 12810) and using the first number to map to an element 𝑥 of 𝐴 and the second number to map to an element of B(x) . In this way we are able to map to every element of 𝑥𝐴𝐵. Although it would be possible to work directly with countability expressed as 𝐹:ω–onto→(𝐴 ⊔ 1o), we instead use functions from subsets of the natural numbers via ctssdccl 7220 and ctssdc 7222.

(Contributed by Jim Kingdon, 31-Oct-2023.)

Hypotheses
Ref Expression
ctiunct.a (𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))
ctiunct.b ((𝜑𝑥𝐴) → 𝐺:ω–onto→(𝐵 ⊔ 1o))
Assertion
Ref Expression
ctiunct (𝜑 → ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
Distinct variable groups:   𝐴,,𝑥   𝐵,   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝜑()   𝐵(𝑥)   𝐹()   𝐺(𝑥,)

Proof of Theorem ctiunct
Dummy variables 𝑗 𝑘 𝑛 𝑢 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpomen 12810 . . . . 5 (ω × ω) ≈ ω
21ensymi 6881 . . . 4 ω ≈ (ω × ω)
3 bren 6842 . . . 4 (ω ≈ (ω × ω) ↔ ∃𝑗 𝑗:ω–1-1-onto→(ω × ω))
42, 3mpbi 145 . . 3 𝑗 𝑗:ω–1-1-onto→(ω × ω)
54a1i 9 . 2 (𝜑 → ∃𝑗 𝑗:ω–1-1-onto→(ω × ω))
6 ctiunct.a . . . . . . . 8 (𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))
7 eqid 2206 . . . . . . . 8 {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} = {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)}
8 eqid 2206 . . . . . . . 8 (inl ∘ 𝐹) = (inl ∘ 𝐹)
96, 7, 8ctssdccl 7220 . . . . . . 7 (𝜑 → ({𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ⊆ ω ∧ (inl ∘ 𝐹):{𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)}))
109simp1d 1012 . . . . . 6 (𝜑 → {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ⊆ ω)
1110adantr 276 . . . . 5 ((𝜑𝑗:ω–1-1-onto→(ω × ω)) → {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ⊆ ω)
129simp3d 1014 . . . . . 6 (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)})
1312adantr 276 . . . . 5 ((𝜑𝑗:ω–1-1-onto→(ω × ω)) → ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)})
149simp2d 1013 . . . . . 6 (𝜑 → (inl ∘ 𝐹):{𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)}–onto𝐴)
1514adantr 276 . . . . 5 ((𝜑𝑗:ω–1-1-onto→(ω × ω)) → (inl ∘ 𝐹):{𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)}–onto𝐴)
16 ctiunct.b . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐺:ω–onto→(𝐵 ⊔ 1o))
17 eqid 2206 . . . . . . . 8 {𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)} = {𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)}
18 eqid 2206 . . . . . . . 8 (inl ∘ 𝐺) = (inl ∘ 𝐺)
1916, 17, 18ctssdccl 7220 . . . . . . 7 ((𝜑𝑥𝐴) → ({𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)} ⊆ ω ∧ (inl ∘ 𝐺):{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)}–onto𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)}))
2019simp1d 1012 . . . . . 6 ((𝜑𝑥𝐴) → {𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)} ⊆ ω)
2120adantlr 477 . . . . 5 (((𝜑𝑗:ω–1-1-onto→(ω × ω)) ∧ 𝑥𝐴) → {𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)} ⊆ ω)
2219simp3d 1014 . . . . . 6 ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})
2322adantlr 477 . . . . 5 (((𝜑𝑗:ω–1-1-onto→(ω × ω)) ∧ 𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})
2419simp2d 1013 . . . . . 6 ((𝜑𝑥𝐴) → (inl ∘ 𝐺):{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)}–onto𝐵)
2524adantlr 477 . . . . 5 (((𝜑𝑗:ω–1-1-onto→(ω × ω)) ∧ 𝑥𝐴) → (inl ∘ 𝐺):{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)}–onto𝐵)
26 simpr 110 . . . . 5 ((𝜑𝑗:ω–1-1-onto→(ω × ω)) → 𝑗:ω–1-1-onto→(ω × ω))
27 eqid 2206 . . . . 5 {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} = {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}
2811, 13, 15, 21, 23, 25, 26, 27ctiunctlemuom 12851 . . . 4 ((𝜑𝑗:ω–1-1-onto→(ω × ω)) → {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ⊆ ω)
29 eqid 2206 . . . . . 6 (𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ↦ (((inl ∘ 𝐹)‘(1st ‘(𝑗𝑛))) / 𝑥(inl ∘ 𝐺)‘(2nd ‘(𝑗𝑛)))) = (𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ↦ (((inl ∘ 𝐹)‘(1st ‘(𝑗𝑛))) / 𝑥(inl ∘ 𝐺)‘(2nd ‘(𝑗𝑛))))
30 nfv 1552 . . . . . . . . 9 𝑥(1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)}
31 nfcsb1v 3127 . . . . . . . . . 10 𝑥((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)}
3231nfel2 2362 . . . . . . . . 9 𝑥(2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)}
3330, 32nfan 1589 . . . . . . . 8 𝑥((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})
34 nfcv 2349 . . . . . . . 8 𝑥ω
3533, 34nfrabw 2688 . . . . . . 7 𝑥{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}
36 nfcsb1v 3127 . . . . . . . 8 𝑥((inl ∘ 𝐹)‘(1st ‘(𝑗𝑛))) / 𝑥(inl ∘ 𝐺)
37 nfcv 2349 . . . . . . . 8 𝑥(2nd ‘(𝑗𝑛))
3836, 37nffv 5593 . . . . . . 7 𝑥(((inl ∘ 𝐹)‘(1st ‘(𝑗𝑛))) / 𝑥(inl ∘ 𝐺)‘(2nd ‘(𝑗𝑛)))
3935, 38nfmpt 4140 . . . . . 6 𝑥(𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ↦ (((inl ∘ 𝐹)‘(1st ‘(𝑗𝑛))) / 𝑥(inl ∘ 𝐺)‘(2nd ‘(𝑗𝑛))))
4011, 13, 15, 21, 23, 25, 26, 27, 29, 39, 35ctiunctlemfo 12854 . . . . 5 ((𝜑𝑗:ω–1-1-onto→(ω × ω)) → (𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ↦ (((inl ∘ 𝐹)‘(1st ‘(𝑗𝑛))) / 𝑥(inl ∘ 𝐺)‘(2nd ‘(𝑗𝑛)))):{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}–onto 𝑥𝐴 𝐵)
41 omex 4645 . . . . . . . 8 ω ∈ V
4241rabex 4192 . . . . . . 7 {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ∈ V
4342mptex 5817 . . . . . 6 (𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ↦ (((inl ∘ 𝐹)‘(1st ‘(𝑗𝑛))) / 𝑥(inl ∘ 𝐺)‘(2nd ‘(𝑗𝑛)))) ∈ V
44 foeq1 5501 . . . . . 6 (𝑘 = (𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ↦ (((inl ∘ 𝐹)‘(1st ‘(𝑗𝑛))) / 𝑥(inl ∘ 𝐺)‘(2nd ‘(𝑗𝑛)))) → (𝑘:{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}–onto 𝑥𝐴 𝐵 ↔ (𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ↦ (((inl ∘ 𝐹)‘(1st ‘(𝑗𝑛))) / 𝑥(inl ∘ 𝐺)‘(2nd ‘(𝑗𝑛)))):{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}–onto 𝑥𝐴 𝐵))
4543, 44spcev 2869 . . . . 5 ((𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ↦ (((inl ∘ 𝐹)‘(1st ‘(𝑗𝑛))) / 𝑥(inl ∘ 𝐺)‘(2nd ‘(𝑗𝑛)))):{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}–onto 𝑥𝐴 𝐵 → ∃𝑘 𝑘:{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}–onto 𝑥𝐴 𝐵)
4640, 45syl 14 . . . 4 ((𝜑𝑗:ω–1-1-onto→(ω × ω)) → ∃𝑘 𝑘:{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}–onto 𝑥𝐴 𝐵)
4711, 13, 15, 21, 23, 25, 26, 27ctiunctlemudc 12852 . . . 4 ((𝜑𝑗:ω–1-1-onto→(ω × ω)) → ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})})
48 sseq1 3217 . . . . . 6 (𝑢 = {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} → (𝑢 ⊆ ω ↔ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ⊆ ω))
49 foeq2 5502 . . . . . . 7 (𝑢 = {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} → (𝑘:𝑢onto 𝑥𝐴 𝐵𝑘:{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}–onto 𝑥𝐴 𝐵))
5049exbidv 1849 . . . . . 6 (𝑢 = {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} → (∃𝑘 𝑘:𝑢onto 𝑥𝐴 𝐵 ↔ ∃𝑘 𝑘:{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}–onto 𝑥𝐴 𝐵))
51 eleq2 2270 . . . . . . . 8 (𝑢 = {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} → (𝑛𝑢𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}))
5251dcbid 840 . . . . . . 7 (𝑢 = {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} → (DECID 𝑛𝑢DECID 𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}))
5352ralbidv 2507 . . . . . 6 (𝑢 = {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} → (∀𝑛 ∈ ω DECID 𝑛𝑢 ↔ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}))
5448, 50, 533anbi123d 1325 . . . . 5 (𝑢 = {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} → ((𝑢 ⊆ ω ∧ ∃𝑘 𝑘:𝑢onto 𝑥𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑢) ↔ ({𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ⊆ ω ∧ ∃𝑘 𝑘:{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}–onto 𝑥𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})})))
5542, 54spcev 2869 . . . 4 (({𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ⊆ ω ∧ ∃𝑘 𝑘:{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}–onto 𝑥𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}) → ∃𝑢(𝑢 ⊆ ω ∧ ∃𝑘 𝑘:𝑢onto 𝑥𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑢))
5628, 46, 47, 55syl3anc 1250 . . 3 ((𝜑𝑗:ω–1-1-onto→(ω × ω)) → ∃𝑢(𝑢 ⊆ ω ∧ ∃𝑘 𝑘:𝑢onto 𝑥𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑢))
57 ctssdc 7222 . . . 4 (∃𝑢(𝑢 ⊆ ω ∧ ∃𝑘 𝑘:𝑢onto 𝑥𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑢) ↔ ∃𝑘 𝑘:ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
58 foeq1 5501 . . . . 5 (𝑘 = → (𝑘:ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o) ↔ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o)))
5958cbvexv 1943 . . . 4 (∃𝑘 𝑘:ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o) ↔ ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
6057, 59bitri 184 . . 3 (∃𝑢(𝑢 ⊆ ω ∧ ∃𝑘 𝑘:𝑢onto 𝑥𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑢) ↔ ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
6156, 60sylib 122 . 2 ((𝜑𝑗:ω–1-1-onto→(ω × ω)) → ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
625, 61exlimddv 1923 1 (𝜑 → ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836  w3a 981   = wceq 1373  wex 1516  wcel 2177  wral 2485  {crab 2489  csb 3094  wss 3167   ciun 3929   class class class wbr 4047  cmpt 4109  ωcom 4642   × cxp 4677  ccnv 4678  cima 4682  ccom 4683  ontowfo 5274  1-1-ontowf1o 5275  cfv 5276  1st c1st 6231  2nd c2nd 6232  1oc1o 6502  cen 6832  cdju 7146  inlcinl 7154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-1o 6509  df-er 6627  df-en 6835  df-dju 7147  df-inl 7156  df-inr 7157  df-case 7193  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-dvds 12143
This theorem is referenced by:  ctiunctal  12856  unct  12857
  Copyright terms: Public domain W3C validator