| Step | Hyp | Ref
 | Expression | 
| 1 |   | xpomen 12612 | 
. . . . 5
⊢ (ω
× ω) ≈ ω | 
| 2 | 1 | ensymi 6841 | 
. . . 4
⊢ ω
≈ (ω × ω) | 
| 3 |   | bren 6806 | 
. . . 4
⊢ (ω
≈ (ω × ω) ↔ ∃𝑗 𝑗:ω–1-1-onto→(ω × ω)) | 
| 4 | 2, 3 | mpbi 145 | 
. . 3
⊢
∃𝑗 𝑗:ω–1-1-onto→(ω × ω) | 
| 5 | 4 | a1i 9 | 
. 2
⊢ (𝜑 → ∃𝑗 𝑗:ω–1-1-onto→(ω × ω)) | 
| 6 |   | ctiunct.a | 
. . . . . . . 8
⊢ (𝜑 → 𝐹:ω–onto→(𝐴 ⊔ 1o)) | 
| 7 |   | eqid 2196 | 
. . . . . . . 8
⊢ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} = {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} | 
| 8 |   | eqid 2196 | 
. . . . . . . 8
⊢ (◡inl ∘ 𝐹) = (◡inl ∘ 𝐹) | 
| 9 | 6, 7, 8 | ctssdccl 7177 | 
. . . . . . 7
⊢ (𝜑 → ({𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ⊆ ω ∧ (◡inl ∘ 𝐹):{𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)}–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)})) | 
| 10 | 9 | simp1d 1011 | 
. . . . . 6
⊢ (𝜑 → {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ⊆ ω) | 
| 11 | 10 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑗:ω–1-1-onto→(ω × ω)) → {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ⊆ ω) | 
| 12 | 9 | simp3d 1013 | 
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)}) | 
| 13 | 12 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑗:ω–1-1-onto→(ω × ω)) →
∀𝑛 ∈ ω
DECID 𝑛
∈ {𝑤 ∈ ω
∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)}) | 
| 14 | 9 | simp2d 1012 | 
. . . . . 6
⊢ (𝜑 → (◡inl ∘ 𝐹):{𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)}–onto→𝐴) | 
| 15 | 14 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑗:ω–1-1-onto→(ω × ω)) → (◡inl ∘ 𝐹):{𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)}–onto→𝐴) | 
| 16 |   | ctiunct.b | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:ω–onto→(𝐵 ⊔ 1o)) | 
| 17 |   | eqid 2196 | 
. . . . . . . 8
⊢ {𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)} = {𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)} | 
| 18 |   | eqid 2196 | 
. . . . . . . 8
⊢ (◡inl ∘ 𝐺) = (◡inl ∘ 𝐺) | 
| 19 | 16, 17, 18 | ctssdccl 7177 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ({𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)} ⊆ ω ∧ (◡inl ∘ 𝐺):{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)}–onto→𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})) | 
| 20 | 19 | simp1d 1011 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → {𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)} ⊆ ω) | 
| 21 | 20 | adantlr 477 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑗:ω–1-1-onto→(ω × ω)) ∧ 𝑥 ∈ 𝐴) → {𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)} ⊆ ω) | 
| 22 | 19 | simp3d 1013 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)}) | 
| 23 | 22 | adantlr 477 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑗:ω–1-1-onto→(ω × ω)) ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)}) | 
| 24 | 19 | simp2d 1012 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (◡inl ∘ 𝐺):{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)}–onto→𝐵) | 
| 25 | 24 | adantlr 477 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑗:ω–1-1-onto→(ω × ω)) ∧ 𝑥 ∈ 𝐴) → (◡inl ∘ 𝐺):{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)}–onto→𝐵) | 
| 26 |   | simpr 110 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑗:ω–1-1-onto→(ω × ω)) → 𝑗:ω–1-1-onto→(ω × ω)) | 
| 27 |   | eqid 2196 | 
. . . . 5
⊢ {𝑧 ∈ ω ∣
((1st ‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} = {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} | 
| 28 | 11, 13, 15, 21, 23, 25, 26, 27 | ctiunctlemuom 12653 | 
. . . 4
⊢ ((𝜑 ∧ 𝑗:ω–1-1-onto→(ω × ω)) → {𝑧 ∈ ω ∣
((1st ‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} ⊆ ω) | 
| 29 |   | eqid 2196 | 
. . . . . 6
⊢ (𝑛 ∈ {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} ↦ (⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑛))) / 𝑥⦌(◡inl ∘ 𝐺)‘(2nd ‘(𝑗‘𝑛)))) = (𝑛 ∈ {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} ↦ (⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑛))) / 𝑥⦌(◡inl ∘ 𝐺)‘(2nd ‘(𝑗‘𝑛)))) | 
| 30 |   | nfv 1542 | 
. . . . . . . . 9
⊢
Ⅎ𝑥(1st ‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} | 
| 31 |   | nfcsb1v 3117 | 
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)} | 
| 32 | 31 | nfel2 2352 | 
. . . . . . . . 9
⊢
Ⅎ𝑥(2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)} | 
| 33 | 30, 32 | nfan 1579 | 
. . . . . . . 8
⊢
Ⅎ𝑥((1st ‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)}) | 
| 34 |   | nfcv 2339 | 
. . . . . . . 8
⊢
Ⅎ𝑥ω | 
| 35 | 33, 34 | nfrabw 2678 | 
. . . . . . 7
⊢
Ⅎ𝑥{𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} | 
| 36 |   | nfcsb1v 3117 | 
. . . . . . . 8
⊢
Ⅎ𝑥⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑛))) / 𝑥⦌(◡inl ∘ 𝐺) | 
| 37 |   | nfcv 2339 | 
. . . . . . . 8
⊢
Ⅎ𝑥(2nd ‘(𝑗‘𝑛)) | 
| 38 | 36, 37 | nffv 5568 | 
. . . . . . 7
⊢
Ⅎ𝑥(⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑛))) / 𝑥⦌(◡inl ∘ 𝐺)‘(2nd ‘(𝑗‘𝑛))) | 
| 39 | 35, 38 | nfmpt 4125 | 
. . . . . 6
⊢
Ⅎ𝑥(𝑛 ∈ {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} ↦ (⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑛))) / 𝑥⦌(◡inl ∘ 𝐺)‘(2nd ‘(𝑗‘𝑛)))) | 
| 40 | 11, 13, 15, 21, 23, 25, 26, 27, 29, 39, 35 | ctiunctlemfo 12656 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑗:ω–1-1-onto→(ω × ω)) → (𝑛 ∈ {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} ↦ (⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑛))) / 𝑥⦌(◡inl ∘ 𝐺)‘(2nd ‘(𝑗‘𝑛)))):{𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})}–onto→∪ 𝑥 ∈ 𝐴 𝐵) | 
| 41 |   | omex 4629 | 
. . . . . . . 8
⊢ ω
∈ V | 
| 42 | 41 | rabex 4177 | 
. . . . . . 7
⊢ {𝑧 ∈ ω ∣
((1st ‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} ∈ V | 
| 43 | 42 | mptex 5788 | 
. . . . . 6
⊢ (𝑛 ∈ {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} ↦ (⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑛))) / 𝑥⦌(◡inl ∘ 𝐺)‘(2nd ‘(𝑗‘𝑛)))) ∈ V | 
| 44 |   | foeq1 5476 | 
. . . . . 6
⊢ (𝑘 = (𝑛 ∈ {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} ↦ (⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑛))) / 𝑥⦌(◡inl ∘ 𝐺)‘(2nd ‘(𝑗‘𝑛)))) → (𝑘:{𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})}–onto→∪ 𝑥 ∈ 𝐴 𝐵 ↔ (𝑛 ∈ {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} ↦ (⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑛))) / 𝑥⦌(◡inl ∘ 𝐺)‘(2nd ‘(𝑗‘𝑛)))):{𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})}–onto→∪ 𝑥 ∈ 𝐴 𝐵)) | 
| 45 | 43, 44 | spcev 2859 | 
. . . . 5
⊢ ((𝑛 ∈ {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} ↦ (⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑛))) / 𝑥⦌(◡inl ∘ 𝐺)‘(2nd ‘(𝑗‘𝑛)))):{𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})}–onto→∪ 𝑥 ∈ 𝐴 𝐵 → ∃𝑘 𝑘:{𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})}–onto→∪ 𝑥 ∈ 𝐴 𝐵) | 
| 46 | 40, 45 | syl 14 | 
. . . 4
⊢ ((𝜑 ∧ 𝑗:ω–1-1-onto→(ω × ω)) → ∃𝑘 𝑘:{𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})}–onto→∪ 𝑥 ∈ 𝐴 𝐵) | 
| 47 | 11, 13, 15, 21, 23, 25, 26, 27 | ctiunctlemudc 12654 | 
. . . 4
⊢ ((𝜑 ∧ 𝑗:ω–1-1-onto→(ω × ω)) →
∀𝑛 ∈ ω
DECID 𝑛
∈ {𝑧 ∈ ω
∣ ((1st ‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})}) | 
| 48 |   | sseq1 3206 | 
. . . . . 6
⊢ (𝑢 = {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} → (𝑢 ⊆ ω ↔ {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} ⊆ ω)) | 
| 49 |   | foeq2 5477 | 
. . . . . . 7
⊢ (𝑢 = {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} → (𝑘:𝑢–onto→∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑘:{𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})}–onto→∪ 𝑥 ∈ 𝐴 𝐵)) | 
| 50 | 49 | exbidv 1839 | 
. . . . . 6
⊢ (𝑢 = {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} → (∃𝑘 𝑘:𝑢–onto→∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑘 𝑘:{𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})}–onto→∪ 𝑥 ∈ 𝐴 𝐵)) | 
| 51 |   | eleq2 2260 | 
. . . . . . . 8
⊢ (𝑢 = {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} → (𝑛 ∈ 𝑢 ↔ 𝑛 ∈ {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})})) | 
| 52 | 51 | dcbid 839 | 
. . . . . . 7
⊢ (𝑢 = {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} → (DECID 𝑛 ∈ 𝑢 ↔ DECID 𝑛 ∈ {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})})) | 
| 53 | 52 | ralbidv 2497 | 
. . . . . 6
⊢ (𝑢 = {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} → (∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑢 ↔ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})})) | 
| 54 | 48, 50, 53 | 3anbi123d 1323 | 
. . . . 5
⊢ (𝑢 = {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} → ((𝑢 ⊆ ω ∧ ∃𝑘 𝑘:𝑢–onto→∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑢) ↔ ({𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} ⊆ ω ∧ ∃𝑘 𝑘:{𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})}–onto→∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})}))) | 
| 55 | 42, 54 | spcev 2859 | 
. . . 4
⊢ (({𝑧 ∈ ω ∣
((1st ‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})} ⊆ ω ∧ ∃𝑘 𝑘:{𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})}–onto→∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑧 ∈ ω ∣ ((1st
‘(𝑗‘𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹‘𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗‘𝑧)) ∈ ⦋((◡inl ∘ 𝐹)‘(1st ‘(𝑗‘𝑧))) / 𝑥⦌{𝑤 ∈ ω ∣ (𝐺‘𝑤) ∈ (inl “ 𝐵)})}) → ∃𝑢(𝑢 ⊆ ω ∧ ∃𝑘 𝑘:𝑢–onto→∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑢)) | 
| 56 | 28, 46, 47, 55 | syl3anc 1249 | 
. . 3
⊢ ((𝜑 ∧ 𝑗:ω–1-1-onto→(ω × ω)) → ∃𝑢(𝑢 ⊆ ω ∧ ∃𝑘 𝑘:𝑢–onto→∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑢)) | 
| 57 |   | ctssdc 7179 | 
. . . 4
⊢
(∃𝑢(𝑢 ⊆ ω ∧
∃𝑘 𝑘:𝑢–onto→∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑢) ↔ ∃𝑘 𝑘:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o)) | 
| 58 |   | foeq1 5476 | 
. . . . 5
⊢ (𝑘 = ℎ → (𝑘:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o) ↔ ℎ:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o))) | 
| 59 | 58 | cbvexv 1933 | 
. . . 4
⊢
(∃𝑘 𝑘:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o) ↔ ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o)) | 
| 60 | 57, 59 | bitri 184 | 
. . 3
⊢
(∃𝑢(𝑢 ⊆ ω ∧
∃𝑘 𝑘:𝑢–onto→∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑢) ↔ ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o)) | 
| 61 | 56, 60 | sylib 122 | 
. 2
⊢ ((𝜑 ∧ 𝑗:ω–1-1-onto→(ω × ω)) → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o)) | 
| 62 | 5, 61 | exlimddv 1913 | 
1
⊢ (𝜑 → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o)) |