ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunct GIF version

Theorem ctiunct 12373
Description: A sequence of enumerations gives an enumeration of the union. We refer to "sequence of enumerations" rather than "countably many countable sets" because the hypothesis provides more than countability for each 𝐵(𝑥): it refers to 𝐵(𝑥) together with the 𝐺(𝑥) which enumerates it. Theorem 8.1.19 of [AczelRathjen], p. 74.

For "countably many countable sets" the key hypothesis would be (𝜑𝑥𝐴) → ∃𝑔𝑔:ω–onto→(𝐵 ⊔ 1o). This is almost omiunct 12377 (which uses countable choice) although that is for a countably infinite collection not any countable collection.

Compare with the case of two sets instead of countably many, as seen at unct 12375, which says that the union of two countable sets is countable .

The proof proceeds by mapping a natural number to a pair of natural numbers (by xpomen 12328) and using the first number to map to an element 𝑥 of 𝐴 and the second number to map to an element of B(x) . In this way we are able to map to every element of 𝑥𝐴𝐵. Although it would be possible to work directly with countability expressed as 𝐹:ω–onto→(𝐴 ⊔ 1o), we instead use functions from subsets of the natural numbers via ctssdccl 7076 and ctssdc 7078.

(Contributed by Jim Kingdon, 31-Oct-2023.)

Hypotheses
Ref Expression
ctiunct.a (𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))
ctiunct.b ((𝜑𝑥𝐴) → 𝐺:ω–onto→(𝐵 ⊔ 1o))
Assertion
Ref Expression
ctiunct (𝜑 → ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
Distinct variable groups:   𝐴,,𝑥   𝐵,   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝜑()   𝐵(𝑥)   𝐹()   𝐺(𝑥,)

Proof of Theorem ctiunct
Dummy variables 𝑗 𝑘 𝑛 𝑢 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpomen 12328 . . . . 5 (ω × ω) ≈ ω
21ensymi 6748 . . . 4 ω ≈ (ω × ω)
3 bren 6713 . . . 4 (ω ≈ (ω × ω) ↔ ∃𝑗 𝑗:ω–1-1-onto→(ω × ω))
42, 3mpbi 144 . . 3 𝑗 𝑗:ω–1-1-onto→(ω × ω)
54a1i 9 . 2 (𝜑 → ∃𝑗 𝑗:ω–1-1-onto→(ω × ω))
6 ctiunct.a . . . . . . . 8 (𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))
7 eqid 2165 . . . . . . . 8 {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} = {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)}
8 eqid 2165 . . . . . . . 8 (inl ∘ 𝐹) = (inl ∘ 𝐹)
96, 7, 8ctssdccl 7076 . . . . . . 7 (𝜑 → ({𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ⊆ ω ∧ (inl ∘ 𝐹):{𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)}))
109simp1d 999 . . . . . 6 (𝜑 → {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ⊆ ω)
1110adantr 274 . . . . 5 ((𝜑𝑗:ω–1-1-onto→(ω × ω)) → {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ⊆ ω)
129simp3d 1001 . . . . . 6 (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)})
1312adantr 274 . . . . 5 ((𝜑𝑗:ω–1-1-onto→(ω × ω)) → ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)})
149simp2d 1000 . . . . . 6 (𝜑 → (inl ∘ 𝐹):{𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)}–onto𝐴)
1514adantr 274 . . . . 5 ((𝜑𝑗:ω–1-1-onto→(ω × ω)) → (inl ∘ 𝐹):{𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)}–onto𝐴)
16 ctiunct.b . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐺:ω–onto→(𝐵 ⊔ 1o))
17 eqid 2165 . . . . . . . 8 {𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)} = {𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)}
18 eqid 2165 . . . . . . . 8 (inl ∘ 𝐺) = (inl ∘ 𝐺)
1916, 17, 18ctssdccl 7076 . . . . . . 7 ((𝜑𝑥𝐴) → ({𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)} ⊆ ω ∧ (inl ∘ 𝐺):{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)}–onto𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)}))
2019simp1d 999 . . . . . 6 ((𝜑𝑥𝐴) → {𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)} ⊆ ω)
2120adantlr 469 . . . . 5 (((𝜑𝑗:ω–1-1-onto→(ω × ω)) ∧ 𝑥𝐴) → {𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)} ⊆ ω)
2219simp3d 1001 . . . . . 6 ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})
2322adantlr 469 . . . . 5 (((𝜑𝑗:ω–1-1-onto→(ω × ω)) ∧ 𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})
2419simp2d 1000 . . . . . 6 ((𝜑𝑥𝐴) → (inl ∘ 𝐺):{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)}–onto𝐵)
2524adantlr 469 . . . . 5 (((𝜑𝑗:ω–1-1-onto→(ω × ω)) ∧ 𝑥𝐴) → (inl ∘ 𝐺):{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)}–onto𝐵)
26 simpr 109 . . . . 5 ((𝜑𝑗:ω–1-1-onto→(ω × ω)) → 𝑗:ω–1-1-onto→(ω × ω))
27 eqid 2165 . . . . 5 {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} = {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}
2811, 13, 15, 21, 23, 25, 26, 27ctiunctlemuom 12369 . . . 4 ((𝜑𝑗:ω–1-1-onto→(ω × ω)) → {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ⊆ ω)
29 eqid 2165 . . . . . 6 (𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ↦ (((inl ∘ 𝐹)‘(1st ‘(𝑗𝑛))) / 𝑥(inl ∘ 𝐺)‘(2nd ‘(𝑗𝑛)))) = (𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ↦ (((inl ∘ 𝐹)‘(1st ‘(𝑗𝑛))) / 𝑥(inl ∘ 𝐺)‘(2nd ‘(𝑗𝑛))))
30 nfv 1516 . . . . . . . . 9 𝑥(1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)}
31 nfcsb1v 3078 . . . . . . . . . 10 𝑥((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)}
3231nfel2 2321 . . . . . . . . 9 𝑥(2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)}
3330, 32nfan 1553 . . . . . . . 8 𝑥((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})
34 nfcv 2308 . . . . . . . 8 𝑥ω
3533, 34nfrabxy 2646 . . . . . . 7 𝑥{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}
36 nfcsb1v 3078 . . . . . . . 8 𝑥((inl ∘ 𝐹)‘(1st ‘(𝑗𝑛))) / 𝑥(inl ∘ 𝐺)
37 nfcv 2308 . . . . . . . 8 𝑥(2nd ‘(𝑗𝑛))
3836, 37nffv 5496 . . . . . . 7 𝑥(((inl ∘ 𝐹)‘(1st ‘(𝑗𝑛))) / 𝑥(inl ∘ 𝐺)‘(2nd ‘(𝑗𝑛)))
3935, 38nfmpt 4074 . . . . . 6 𝑥(𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ↦ (((inl ∘ 𝐹)‘(1st ‘(𝑗𝑛))) / 𝑥(inl ∘ 𝐺)‘(2nd ‘(𝑗𝑛))))
4011, 13, 15, 21, 23, 25, 26, 27, 29, 39, 35ctiunctlemfo 12372 . . . . 5 ((𝜑𝑗:ω–1-1-onto→(ω × ω)) → (𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ↦ (((inl ∘ 𝐹)‘(1st ‘(𝑗𝑛))) / 𝑥(inl ∘ 𝐺)‘(2nd ‘(𝑗𝑛)))):{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}–onto 𝑥𝐴 𝐵)
41 omex 4570 . . . . . . . 8 ω ∈ V
4241rabex 4126 . . . . . . 7 {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ∈ V
4342mptex 5711 . . . . . 6 (𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ↦ (((inl ∘ 𝐹)‘(1st ‘(𝑗𝑛))) / 𝑥(inl ∘ 𝐺)‘(2nd ‘(𝑗𝑛)))) ∈ V
44 foeq1 5406 . . . . . 6 (𝑘 = (𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ↦ (((inl ∘ 𝐹)‘(1st ‘(𝑗𝑛))) / 𝑥(inl ∘ 𝐺)‘(2nd ‘(𝑗𝑛)))) → (𝑘:{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}–onto 𝑥𝐴 𝐵 ↔ (𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ↦ (((inl ∘ 𝐹)‘(1st ‘(𝑗𝑛))) / 𝑥(inl ∘ 𝐺)‘(2nd ‘(𝑗𝑛)))):{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}–onto 𝑥𝐴 𝐵))
4543, 44spcev 2821 . . . . 5 ((𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ↦ (((inl ∘ 𝐹)‘(1st ‘(𝑗𝑛))) / 𝑥(inl ∘ 𝐺)‘(2nd ‘(𝑗𝑛)))):{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}–onto 𝑥𝐴 𝐵 → ∃𝑘 𝑘:{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}–onto 𝑥𝐴 𝐵)
4640, 45syl 14 . . . 4 ((𝜑𝑗:ω–1-1-onto→(ω × ω)) → ∃𝑘 𝑘:{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}–onto 𝑥𝐴 𝐵)
4711, 13, 15, 21, 23, 25, 26, 27ctiunctlemudc 12370 . . . 4 ((𝜑𝑗:ω–1-1-onto→(ω × ω)) → ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})})
48 sseq1 3165 . . . . . 6 (𝑢 = {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} → (𝑢 ⊆ ω ↔ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ⊆ ω))
49 foeq2 5407 . . . . . . 7 (𝑢 = {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} → (𝑘:𝑢onto 𝑥𝐴 𝐵𝑘:{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}–onto 𝑥𝐴 𝐵))
5049exbidv 1813 . . . . . 6 (𝑢 = {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} → (∃𝑘 𝑘:𝑢onto 𝑥𝐴 𝐵 ↔ ∃𝑘 𝑘:{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}–onto 𝑥𝐴 𝐵))
51 eleq2 2230 . . . . . . . 8 (𝑢 = {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} → (𝑛𝑢𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}))
5251dcbid 828 . . . . . . 7 (𝑢 = {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} → (DECID 𝑛𝑢DECID 𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}))
5352ralbidv 2466 . . . . . 6 (𝑢 = {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} → (∀𝑛 ∈ ω DECID 𝑛𝑢 ↔ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}))
5448, 50, 533anbi123d 1302 . . . . 5 (𝑢 = {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} → ((𝑢 ⊆ ω ∧ ∃𝑘 𝑘:𝑢onto 𝑥𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑢) ↔ ({𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ⊆ ω ∧ ∃𝑘 𝑘:{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}–onto 𝑥𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})})))
5542, 54spcev 2821 . . . 4 (({𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})} ⊆ ω ∧ ∃𝑘 𝑘:{𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}–onto 𝑥𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑧 ∈ ω ∣ ((1st ‘(𝑗𝑧)) ∈ {𝑤 ∈ ω ∣ (𝐹𝑤) ∈ (inl “ 𝐴)} ∧ (2nd ‘(𝑗𝑧)) ∈ ((inl ∘ 𝐹)‘(1st ‘(𝑗𝑧))) / 𝑥{𝑤 ∈ ω ∣ (𝐺𝑤) ∈ (inl “ 𝐵)})}) → ∃𝑢(𝑢 ⊆ ω ∧ ∃𝑘 𝑘:𝑢onto 𝑥𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑢))
5628, 46, 47, 55syl3anc 1228 . . 3 ((𝜑𝑗:ω–1-1-onto→(ω × ω)) → ∃𝑢(𝑢 ⊆ ω ∧ ∃𝑘 𝑘:𝑢onto 𝑥𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑢))
57 ctssdc 7078 . . . 4 (∃𝑢(𝑢 ⊆ ω ∧ ∃𝑘 𝑘:𝑢onto 𝑥𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑢) ↔ ∃𝑘 𝑘:ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
58 foeq1 5406 . . . . 5 (𝑘 = → (𝑘:ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o) ↔ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o)))
5958cbvexv 1906 . . . 4 (∃𝑘 𝑘:ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o) ↔ ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
6057, 59bitri 183 . . 3 (∃𝑢(𝑢 ⊆ ω ∧ ∃𝑘 𝑘:𝑢onto 𝑥𝐴 𝐵 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑢) ↔ ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
6156, 60sylib 121 . 2 ((𝜑𝑗:ω–1-1-onto→(ω × ω)) → ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
625, 61exlimddv 1886 1 (𝜑 → ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 824  w3a 968   = wceq 1343  wex 1480  wcel 2136  wral 2444  {crab 2448  csb 3045  wss 3116   ciun 3866   class class class wbr 3982  cmpt 4043  ωcom 4567   × cxp 4602  ccnv 4603  cima 4607  ccom 4608  ontowfo 5186  1-1-ontowf1o 5187  cfv 5188  1st c1st 6106  2nd c2nd 6107  1oc1o 6377  cen 6704  cdju 7002  inlcinl 7010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-er 6501  df-en 6707  df-dju 7003  df-inl 7012  df-inr 7013  df-case 7049  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-dvds 11728
This theorem is referenced by:  ctiunctal  12374  unct  12375
  Copyright terms: Public domain W3C validator