ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resttopon GIF version

Theorem resttopon 14830
Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
resttopon ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))

Proof of Theorem resttopon
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 topontop 14673 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
21adantr 276 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
3 id 19 . . . 4 (𝐴𝑋𝐴𝑋)
4 toponmax 14684 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
5 ssexg 4222 . . . 4 ((𝐴𝑋𝑋𝐽) → 𝐴 ∈ V)
63, 4, 5syl2anr 290 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ V)
7 resttop 14829 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽t 𝐴) ∈ Top)
82, 6, 7syl2anc 411 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ Top)
9 simpr 110 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑋)
10 sseqin2 3423 . . . . . 6 (𝐴𝑋 ↔ (𝑋𝐴) = 𝐴)
119, 10sylib 122 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑋𝐴) = 𝐴)
12 simpl 109 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
134adantr 276 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑋𝐽)
14 elrestr 13266 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V ∧ 𝑋𝐽) → (𝑋𝐴) ∈ (𝐽t 𝐴))
1512, 6, 13, 14syl3anc 1271 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑋𝐴) ∈ (𝐽t 𝐴))
1611, 15eqeltrrd 2307 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽t 𝐴))
17 elssuni 3915 . . . 4 (𝐴 ∈ (𝐽t 𝐴) → 𝐴 (𝐽t 𝐴))
1816, 17syl 14 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 (𝐽t 𝐴))
19 restval 13264 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
206, 19syldan 282 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
21 inss2 3425 . . . . . . . . 9 (𝑥𝐴) ⊆ 𝐴
22 vex 2802 . . . . . . . . . . 11 𝑥 ∈ V
2322inex1 4217 . . . . . . . . . 10 (𝑥𝐴) ∈ V
2423elpw 3655 . . . . . . . . 9 ((𝑥𝐴) ∈ 𝒫 𝐴 ↔ (𝑥𝐴) ⊆ 𝐴)
2521, 24mpbir 146 . . . . . . . 8 (𝑥𝐴) ∈ 𝒫 𝐴
2625a1i 9 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝑥𝐴) ∈ 𝒫 𝐴)
2726fmpttd 5783 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑥𝐽 ↦ (𝑥𝐴)):𝐽⟶𝒫 𝐴)
2827frnd 5479 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ran (𝑥𝐽 ↦ (𝑥𝐴)) ⊆ 𝒫 𝐴)
2920, 28eqsstrd 3260 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ⊆ 𝒫 𝐴)
30 sspwuni 4049 . . . 4 ((𝐽t 𝐴) ⊆ 𝒫 𝐴 (𝐽t 𝐴) ⊆ 𝐴)
3129, 30sylib 122 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ⊆ 𝐴)
3218, 31eqssd 3241 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
33 istopon 14672 . 2 ((𝐽t 𝐴) ∈ (TopOn‘𝐴) ↔ ((𝐽t 𝐴) ∈ Top ∧ 𝐴 = (𝐽t 𝐴)))
348, 32, 33sylanbrc 417 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  cin 3196  wss 3197  𝒫 cpw 3649   cuni 3887  cmpt 4144  ran crn 4717  cfv 5314  (class class class)co 5994  t crest 13258  Topctop 14656  TopOnctopon 14669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-rest 13260  df-topgen 13279  df-top 14657  df-topon 14670  df-bases 14702
This theorem is referenced by:  restuni  14831  stoig  14832  cnrest  14894  cnrest2  14895  cnrest2r  14896  cnptopresti  14897  cnptoprest  14898  cnptoprest2  14899  divcnap  15224  cncfmpt2fcntop  15258  cnplimcim  15326  cnlimcim  15330  cnlimc  15331  limccnpcntop  15334  limccnp2lem  15335  limccnp2cntop  15336  dvfvalap  15340  dvbss  15344  dvfgg  15347  dvcnp2cntop  15358  dvcn  15359  dvaddxxbr  15360  dvmulxxbr  15361  dvmptfsum  15384
  Copyright terms: Public domain W3C validator