Step | Hyp | Ref
| Expression |
1 | | topontop 13599 |
. . . 4
β’ (π½ β (TopOnβπ) β π½ β Top) |
2 | 1 | adantr 276 |
. . 3
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β π½ β Top) |
3 | | id 19 |
. . . 4
β’ (π΄ β π β π΄ β π) |
4 | | toponmax 13610 |
. . . 4
β’ (π½ β (TopOnβπ) β π β π½) |
5 | | ssexg 4144 |
. . . 4
β’ ((π΄ β π β§ π β π½) β π΄ β V) |
6 | 3, 4, 5 | syl2anr 290 |
. . 3
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β π΄ β V) |
7 | | resttop 13755 |
. . 3
β’ ((π½ β Top β§ π΄ β V) β (π½ βΎt π΄) β Top) |
8 | 2, 6, 7 | syl2anc 411 |
. 2
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π½ βΎt π΄) β Top) |
9 | | simpr 110 |
. . . . . 6
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β π΄ β π) |
10 | | sseqin2 3356 |
. . . . . 6
β’ (π΄ β π β (π β© π΄) = π΄) |
11 | 9, 10 | sylib 122 |
. . . . 5
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π β© π΄) = π΄) |
12 | | simpl 109 |
. . . . . 6
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β π½ β (TopOnβπ)) |
13 | 4 | adantr 276 |
. . . . . 6
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β π β π½) |
14 | | elrestr 12701 |
. . . . . 6
β’ ((π½ β (TopOnβπ) β§ π΄ β V β§ π β π½) β (π β© π΄) β (π½ βΎt π΄)) |
15 | 12, 6, 13, 14 | syl3anc 1238 |
. . . . 5
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π β© π΄) β (π½ βΎt π΄)) |
16 | 11, 15 | eqeltrrd 2255 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β π΄ β (π½ βΎt π΄)) |
17 | | elssuni 3839 |
. . . 4
β’ (π΄ β (π½ βΎt π΄) β π΄ β βͺ (π½ βΎt π΄)) |
18 | 16, 17 | syl 14 |
. . 3
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β π΄ β βͺ (π½ βΎt π΄)) |
19 | | restval 12699 |
. . . . . 6
β’ ((π½ β (TopOnβπ) β§ π΄ β V) β (π½ βΎt π΄) = ran (π₯ β π½ β¦ (π₯ β© π΄))) |
20 | 6, 19 | syldan 282 |
. . . . 5
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π½ βΎt π΄) = ran (π₯ β π½ β¦ (π₯ β© π΄))) |
21 | | inss2 3358 |
. . . . . . . . 9
β’ (π₯ β© π΄) β π΄ |
22 | | vex 2742 |
. . . . . . . . . . 11
β’ π₯ β V |
23 | 22 | inex1 4139 |
. . . . . . . . . 10
β’ (π₯ β© π΄) β V |
24 | 23 | elpw 3583 |
. . . . . . . . 9
β’ ((π₯ β© π΄) β π« π΄ β (π₯ β© π΄) β π΄) |
25 | 21, 24 | mpbir 146 |
. . . . . . . 8
β’ (π₯ β© π΄) β π« π΄ |
26 | 25 | a1i 9 |
. . . . . . 7
β’ (((π½ β (TopOnβπ) β§ π΄ β π) β§ π₯ β π½) β (π₯ β© π΄) β π« π΄) |
27 | 26 | fmpttd 5673 |
. . . . . 6
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π₯ β π½ β¦ (π₯ β© π΄)):π½βΆπ« π΄) |
28 | 27 | frnd 5377 |
. . . . 5
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β ran (π₯ β π½ β¦ (π₯ β© π΄)) β π« π΄) |
29 | 20, 28 | eqsstrd 3193 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π½ βΎt π΄) β π« π΄) |
30 | | sspwuni 3973 |
. . . 4
β’ ((π½ βΎt π΄) β π« π΄ β βͺ (π½
βΎt π΄)
β π΄) |
31 | 29, 30 | sylib 122 |
. . 3
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β βͺ (π½ βΎt π΄) β π΄) |
32 | 18, 31 | eqssd 3174 |
. 2
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β π΄ = βͺ (π½ βΎt π΄)) |
33 | | istopon 13598 |
. 2
β’ ((π½ βΎt π΄) β (TopOnβπ΄) β ((π½ βΎt π΄) β Top β§ π΄ = βͺ (π½ βΎt π΄))) |
34 | 8, 32, 33 | sylanbrc 417 |
1
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π½ βΎt π΄) β (TopOnβπ΄)) |