Step | Hyp | Ref
| Expression |
1 | | simpr 109 |
. . . . 5
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) |
2 | | cntop2 12996 |
. . . . . . . 8
⊢ (𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) → (𝐾 ↾t 𝐵) ∈ Top) |
3 | 2 | adantl 275 |
. . . . . . 7
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐾 ↾t 𝐵) ∈ Top) |
4 | | restrcl 12961 |
. . . . . . 7
⊢ ((𝐾 ↾t 𝐵) ∈ Top → (𝐾 ∈ V ∧ 𝐵 ∈ V)) |
5 | | eqid 2170 |
. . . . . . . 8
⊢ ∪ 𝐾 =
∪ 𝐾 |
6 | 5 | restin 12970 |
. . . . . . 7
⊢ ((𝐾 ∈ V ∧ 𝐵 ∈ V) → (𝐾 ↾t 𝐵) = (𝐾 ↾t (𝐵 ∩ ∪ 𝐾))) |
7 | 3, 4, 6 | 3syl 17 |
. . . . . 6
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐾 ↾t 𝐵) = (𝐾 ↾t (𝐵 ∩ ∪ 𝐾))) |
8 | 7 | oveq2d 5869 |
. . . . 5
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐽 Cn (𝐾 ↾t 𝐵)) = (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)))) |
9 | 1, 8 | eleqtrd 2249 |
. . . 4
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝑓 ∈ (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)))) |
10 | | simpl 108 |
. . . . . 6
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐾 ∈ Top) |
11 | 5 | toptopon 12810 |
. . . . . 6
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
12 | 10, 11 | sylib 121 |
. . . . 5
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
13 | | cntop1 12995 |
. . . . . . . . 9
⊢ (𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) → 𝐽 ∈ Top) |
14 | 13 | adantl 275 |
. . . . . . . 8
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐽 ∈ Top) |
15 | | eqid 2170 |
. . . . . . . . 9
⊢ ∪ 𝐽 =
∪ 𝐽 |
16 | 15 | toptopon 12810 |
. . . . . . . 8
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
17 | 14, 16 | sylib 121 |
. . . . . . 7
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
18 | | inss2 3348 |
. . . . . . . 8
⊢ (𝐵 ∩ ∪ 𝐾)
⊆ ∪ 𝐾 |
19 | | resttopon 12965 |
. . . . . . . 8
⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾)
∧ (𝐵 ∩ ∪ 𝐾)
⊆ ∪ 𝐾) → (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)) ∈ (TopOn‘(𝐵 ∩ ∪ 𝐾))) |
20 | 12, 18, 19 | sylancl 411 |
. . . . . . 7
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)) ∈ (TopOn‘(𝐵 ∩ ∪ 𝐾))) |
21 | | cnf2 12999 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ (𝐾
↾t (𝐵
∩ ∪ 𝐾)) ∈ (TopOn‘(𝐵 ∩ ∪ 𝐾)) ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)))) → 𝑓:∪ 𝐽⟶(𝐵 ∩ ∪ 𝐾)) |
22 | 17, 20, 9, 21 | syl3anc 1233 |
. . . . . 6
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝑓:∪ 𝐽⟶(𝐵 ∩ ∪ 𝐾)) |
23 | 22 | frnd 5357 |
. . . . 5
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → ran 𝑓 ⊆ (𝐵 ∩ ∪ 𝐾)) |
24 | 18 | a1i 9 |
. . . . 5
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐵 ∩ ∪ 𝐾) ⊆ ∪ 𝐾) |
25 | | cnrest2 13030 |
. . . . 5
⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾)
∧ ran 𝑓 ⊆ (𝐵 ∩ ∪ 𝐾)
∧ (𝐵 ∩ ∪ 𝐾)
⊆ ∪ 𝐾) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾))))) |
26 | 12, 23, 24, 25 | syl3anc 1233 |
. . . 4
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾))))) |
27 | 9, 26 | mpbird 166 |
. . 3
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝑓 ∈ (𝐽 Cn 𝐾)) |
28 | 27 | ex 114 |
. 2
⊢ (𝐾 ∈ Top → (𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) → 𝑓 ∈ (𝐽 Cn 𝐾))) |
29 | 28 | ssrdv 3153 |
1
⊢ (𝐾 ∈ Top → (𝐽 Cn (𝐾 ↾t 𝐵)) ⊆ (𝐽 Cn 𝐾)) |