ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrest2r GIF version

Theorem cnrest2r 12406
Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Jun-2014.)
Assertion
Ref Expression
cnrest2r (𝐾 ∈ Top → (𝐽 Cn (𝐾t 𝐵)) ⊆ (𝐽 Cn 𝐾))

Proof of Theorem cnrest2r
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵)))
2 cntop2 12371 . . . . . . . 8 (𝑓 ∈ (𝐽 Cn (𝐾t 𝐵)) → (𝐾t 𝐵) ∈ Top)
32adantl 275 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐾t 𝐵) ∈ Top)
4 restrcl 12336 . . . . . . 7 ((𝐾t 𝐵) ∈ Top → (𝐾 ∈ V ∧ 𝐵 ∈ V))
5 eqid 2139 . . . . . . . 8 𝐾 = 𝐾
65restin 12345 . . . . . . 7 ((𝐾 ∈ V ∧ 𝐵 ∈ V) → (𝐾t 𝐵) = (𝐾t (𝐵 𝐾)))
73, 4, 63syl 17 . . . . . 6 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐾t 𝐵) = (𝐾t (𝐵 𝐾)))
87oveq2d 5790 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐽 Cn (𝐾t 𝐵)) = (𝐽 Cn (𝐾t (𝐵 𝐾))))
91, 8eleqtrd 2218 . . . 4 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝑓 ∈ (𝐽 Cn (𝐾t (𝐵 𝐾))))
10 simpl 108 . . . . . 6 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐾 ∈ Top)
115toptopon 12185 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
1210, 11sylib 121 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐾 ∈ (TopOn‘ 𝐾))
13 cntop1 12370 . . . . . . . . 9 (𝑓 ∈ (𝐽 Cn (𝐾t 𝐵)) → 𝐽 ∈ Top)
1413adantl 275 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐽 ∈ Top)
15 eqid 2139 . . . . . . . . 9 𝐽 = 𝐽
1615toptopon 12185 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1714, 16sylib 121 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐽 ∈ (TopOn‘ 𝐽))
18 inss2 3297 . . . . . . . 8 (𝐵 𝐾) ⊆ 𝐾
19 resttopon 12340 . . . . . . . 8 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝐵 𝐾) ⊆ 𝐾) → (𝐾t (𝐵 𝐾)) ∈ (TopOn‘(𝐵 𝐾)))
2012, 18, 19sylancl 409 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐾t (𝐵 𝐾)) ∈ (TopOn‘(𝐵 𝐾)))
21 cnf2 12374 . . . . . . 7 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐾t (𝐵 𝐾)) ∈ (TopOn‘(𝐵 𝐾)) ∧ 𝑓 ∈ (𝐽 Cn (𝐾t (𝐵 𝐾)))) → 𝑓: 𝐽⟶(𝐵 𝐾))
2217, 20, 9, 21syl3anc 1216 . . . . . 6 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝑓: 𝐽⟶(𝐵 𝐾))
2322frnd 5282 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → ran 𝑓 ⊆ (𝐵 𝐾))
2418a1i 9 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐵 𝐾) ⊆ 𝐾)
25 cnrest2 12405 . . . . 5 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran 𝑓 ⊆ (𝐵 𝐾) ∧ (𝐵 𝐾) ⊆ 𝐾) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ 𝑓 ∈ (𝐽 Cn (𝐾t (𝐵 𝐾)))))
2612, 23, 24, 25syl3anc 1216 . . . 4 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ 𝑓 ∈ (𝐽 Cn (𝐾t (𝐵 𝐾)))))
279, 26mpbird 166 . . 3 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝑓 ∈ (𝐽 Cn 𝐾))
2827ex 114 . 2 (𝐾 ∈ Top → (𝑓 ∈ (𝐽 Cn (𝐾t 𝐵)) → 𝑓 ∈ (𝐽 Cn 𝐾)))
2928ssrdv 3103 1 (𝐾 ∈ Top → (𝐽 Cn (𝐾t 𝐵)) ⊆ (𝐽 Cn 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  Vcvv 2686  cin 3070  wss 3071   cuni 3736  ran crn 4540  wf 5119  cfv 5123  (class class class)co 5774  t crest 12120  Topctop 12164  TopOnctopon 12177   Cn ccn 12354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-rest 12122  df-topgen 12141  df-top 12165  df-topon 12178  df-bases 12210  df-cn 12357
This theorem is referenced by:  cnrehmeocntop  12762
  Copyright terms: Public domain W3C validator