| Step | Hyp | Ref
| Expression |
| 1 | | simpr 110 |
. . . . 5
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) |
| 2 | | cntop2 14522 |
. . . . . . . 8
⊢ (𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) → (𝐾 ↾t 𝐵) ∈ Top) |
| 3 | 2 | adantl 277 |
. . . . . . 7
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐾 ↾t 𝐵) ∈ Top) |
| 4 | | restrcl 14487 |
. . . . . . 7
⊢ ((𝐾 ↾t 𝐵) ∈ Top → (𝐾 ∈ V ∧ 𝐵 ∈ V)) |
| 5 | | eqid 2196 |
. . . . . . . 8
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 6 | 5 | restin 14496 |
. . . . . . 7
⊢ ((𝐾 ∈ V ∧ 𝐵 ∈ V) → (𝐾 ↾t 𝐵) = (𝐾 ↾t (𝐵 ∩ ∪ 𝐾))) |
| 7 | 3, 4, 6 | 3syl 17 |
. . . . . 6
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐾 ↾t 𝐵) = (𝐾 ↾t (𝐵 ∩ ∪ 𝐾))) |
| 8 | 7 | oveq2d 5941 |
. . . . 5
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐽 Cn (𝐾 ↾t 𝐵)) = (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)))) |
| 9 | 1, 8 | eleqtrd 2275 |
. . . 4
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝑓 ∈ (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)))) |
| 10 | | simpl 109 |
. . . . . 6
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐾 ∈ Top) |
| 11 | 5 | toptopon 14338 |
. . . . . 6
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 12 | 10, 11 | sylib 122 |
. . . . 5
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 13 | | cntop1 14521 |
. . . . . . . . 9
⊢ (𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) → 𝐽 ∈ Top) |
| 14 | 13 | adantl 277 |
. . . . . . . 8
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐽 ∈ Top) |
| 15 | | eqid 2196 |
. . . . . . . . 9
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 16 | 15 | toptopon 14338 |
. . . . . . . 8
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 17 | 14, 16 | sylib 122 |
. . . . . . 7
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 18 | | inss2 3385 |
. . . . . . . 8
⊢ (𝐵 ∩ ∪ 𝐾)
⊆ ∪ 𝐾 |
| 19 | | resttopon 14491 |
. . . . . . . 8
⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾)
∧ (𝐵 ∩ ∪ 𝐾)
⊆ ∪ 𝐾) → (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)) ∈ (TopOn‘(𝐵 ∩ ∪ 𝐾))) |
| 20 | 12, 18, 19 | sylancl 413 |
. . . . . . 7
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)) ∈ (TopOn‘(𝐵 ∩ ∪ 𝐾))) |
| 21 | | cnf2 14525 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ (𝐾
↾t (𝐵
∩ ∪ 𝐾)) ∈ (TopOn‘(𝐵 ∩ ∪ 𝐾)) ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)))) → 𝑓:∪ 𝐽⟶(𝐵 ∩ ∪ 𝐾)) |
| 22 | 17, 20, 9, 21 | syl3anc 1249 |
. . . . . 6
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝑓:∪ 𝐽⟶(𝐵 ∩ ∪ 𝐾)) |
| 23 | 22 | frnd 5420 |
. . . . 5
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → ran 𝑓 ⊆ (𝐵 ∩ ∪ 𝐾)) |
| 24 | 18 | a1i 9 |
. . . . 5
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐵 ∩ ∪ 𝐾) ⊆ ∪ 𝐾) |
| 25 | | cnrest2 14556 |
. . . . 5
⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾)
∧ ran 𝑓 ⊆ (𝐵 ∩ ∪ 𝐾)
∧ (𝐵 ∩ ∪ 𝐾)
⊆ ∪ 𝐾) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾))))) |
| 26 | 12, 23, 24, 25 | syl3anc 1249 |
. . . 4
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾))))) |
| 27 | 9, 26 | mpbird 167 |
. . 3
⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝑓 ∈ (𝐽 Cn 𝐾)) |
| 28 | 27 | ex 115 |
. 2
⊢ (𝐾 ∈ Top → (𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) → 𝑓 ∈ (𝐽 Cn 𝐾))) |
| 29 | 28 | ssrdv 3190 |
1
⊢ (𝐾 ∈ Top → (𝐽 Cn (𝐾 ↾t 𝐵)) ⊆ (𝐽 Cn 𝐾)) |