ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrest2r GIF version

Theorem cnrest2r 14557
Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Jun-2014.)
Assertion
Ref Expression
cnrest2r (𝐾 ∈ Top → (𝐽 Cn (𝐾t 𝐵)) ⊆ (𝐽 Cn 𝐾))

Proof of Theorem cnrest2r
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵)))
2 cntop2 14522 . . . . . . . 8 (𝑓 ∈ (𝐽 Cn (𝐾t 𝐵)) → (𝐾t 𝐵) ∈ Top)
32adantl 277 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐾t 𝐵) ∈ Top)
4 restrcl 14487 . . . . . . 7 ((𝐾t 𝐵) ∈ Top → (𝐾 ∈ V ∧ 𝐵 ∈ V))
5 eqid 2196 . . . . . . . 8 𝐾 = 𝐾
65restin 14496 . . . . . . 7 ((𝐾 ∈ V ∧ 𝐵 ∈ V) → (𝐾t 𝐵) = (𝐾t (𝐵 𝐾)))
73, 4, 63syl 17 . . . . . 6 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐾t 𝐵) = (𝐾t (𝐵 𝐾)))
87oveq2d 5941 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐽 Cn (𝐾t 𝐵)) = (𝐽 Cn (𝐾t (𝐵 𝐾))))
91, 8eleqtrd 2275 . . . 4 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝑓 ∈ (𝐽 Cn (𝐾t (𝐵 𝐾))))
10 simpl 109 . . . . . 6 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐾 ∈ Top)
115toptopon 14338 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
1210, 11sylib 122 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐾 ∈ (TopOn‘ 𝐾))
13 cntop1 14521 . . . . . . . . 9 (𝑓 ∈ (𝐽 Cn (𝐾t 𝐵)) → 𝐽 ∈ Top)
1413adantl 277 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐽 ∈ Top)
15 eqid 2196 . . . . . . . . 9 𝐽 = 𝐽
1615toptopon 14338 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1714, 16sylib 122 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐽 ∈ (TopOn‘ 𝐽))
18 inss2 3385 . . . . . . . 8 (𝐵 𝐾) ⊆ 𝐾
19 resttopon 14491 . . . . . . . 8 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝐵 𝐾) ⊆ 𝐾) → (𝐾t (𝐵 𝐾)) ∈ (TopOn‘(𝐵 𝐾)))
2012, 18, 19sylancl 413 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐾t (𝐵 𝐾)) ∈ (TopOn‘(𝐵 𝐾)))
21 cnf2 14525 . . . . . . 7 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐾t (𝐵 𝐾)) ∈ (TopOn‘(𝐵 𝐾)) ∧ 𝑓 ∈ (𝐽 Cn (𝐾t (𝐵 𝐾)))) → 𝑓: 𝐽⟶(𝐵 𝐾))
2217, 20, 9, 21syl3anc 1249 . . . . . 6 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝑓: 𝐽⟶(𝐵 𝐾))
2322frnd 5420 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → ran 𝑓 ⊆ (𝐵 𝐾))
2418a1i 9 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐵 𝐾) ⊆ 𝐾)
25 cnrest2 14556 . . . . 5 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran 𝑓 ⊆ (𝐵 𝐾) ∧ (𝐵 𝐾) ⊆ 𝐾) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ 𝑓 ∈ (𝐽 Cn (𝐾t (𝐵 𝐾)))))
2612, 23, 24, 25syl3anc 1249 . . . 4 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ 𝑓 ∈ (𝐽 Cn (𝐾t (𝐵 𝐾)))))
279, 26mpbird 167 . . 3 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝑓 ∈ (𝐽 Cn 𝐾))
2827ex 115 . 2 (𝐾 ∈ Top → (𝑓 ∈ (𝐽 Cn (𝐾t 𝐵)) → 𝑓 ∈ (𝐽 Cn 𝐾)))
2928ssrdv 3190 1 (𝐾 ∈ Top → (𝐽 Cn (𝐾t 𝐵)) ⊆ (𝐽 Cn 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  cin 3156  wss 3157   cuni 3840  ran crn 4665  wf 5255  cfv 5259  (class class class)co 5925  t crest 12941  Topctop 14317  TopOnctopon 14330   Cn ccn 14505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-rest 12943  df-topgen 12962  df-top 14318  df-topon 14331  df-bases 14363  df-cn 14508
This theorem is referenced by:  cnrehmeocntop  14930
  Copyright terms: Public domain W3C validator