ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unirnblps GIF version

Theorem unirnblps 14193
Description: The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
unirnblps (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ βˆͺ ran (ballβ€˜π·) = 𝑋)

Proof of Theorem unirnblps
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 blfps 14180 . . . 4 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (ballβ€˜π·):(𝑋 Γ— ℝ*)βŸΆπ’« 𝑋)
21frnd 5387 . . 3 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ ran (ballβ€˜π·) βŠ† 𝒫 𝑋)
3 sspwuni 3983 . . 3 (ran (ballβ€˜π·) βŠ† 𝒫 𝑋 ↔ βˆͺ ran (ballβ€˜π·) βŠ† 𝑋)
42, 3sylib 122 . 2 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ βˆͺ ran (ballβ€˜π·) βŠ† 𝑋)
5 1rp 9670 . . . 4 1 ∈ ℝ+
6 blcntrps 14186 . . . 4 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ 1 ∈ ℝ+) β†’ π‘₯ ∈ (π‘₯(ballβ€˜π·)1))
75, 6mp3an3 1336 . . 3 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) β†’ π‘₯ ∈ (π‘₯(ballβ€˜π·)1))
8 rpxr 9674 . . . . 5 (1 ∈ ℝ+ β†’ 1 ∈ ℝ*)
95, 8ax-mp 5 . . . 4 1 ∈ ℝ*
10 blelrnps 14190 . . . 4 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ 1 ∈ ℝ*) β†’ (π‘₯(ballβ€˜π·)1) ∈ ran (ballβ€˜π·))
119, 10mp3an3 1336 . . 3 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) β†’ (π‘₯(ballβ€˜π·)1) ∈ ran (ballβ€˜π·))
12 elunii 3826 . . 3 ((π‘₯ ∈ (π‘₯(ballβ€˜π·)1) ∧ (π‘₯(ballβ€˜π·)1) ∈ ran (ballβ€˜π·)) β†’ π‘₯ ∈ βˆͺ ran (ballβ€˜π·))
137, 11, 12syl2anc 411 . 2 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) β†’ π‘₯ ∈ βˆͺ ran (ballβ€˜π·))
144, 13eqelssd 3186 1 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ βˆͺ ran (ballβ€˜π·) = 𝑋)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1363   ∈ wcel 2158   βŠ† wss 3141  π’« cpw 3587  βˆͺ cuni 3821   Γ— cxp 4636  ran crn 4639  β€˜cfv 5228  (class class class)co 5888  1c1 7825  β„*cxr 8004  β„+crp 9666  PsMetcpsmet 13696  ballcbl 13699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1re 7918  ax-addrcl 7921  ax-0lt1 7930  ax-rnegex 7933
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-map 6663  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-rp 9667  df-psmet 13704  df-bl 13707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator