Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unirnblps | GIF version |
Description: The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
Ref | Expression |
---|---|
unirnblps | ⊢ (𝐷 ∈ (PsMet‘𝑋) → ∪ ran (ball‘𝐷) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blfps 13049 | . . . 4 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋) | |
2 | 1 | frnd 5347 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ran (ball‘𝐷) ⊆ 𝒫 𝑋) |
3 | sspwuni 3950 | . . 3 ⊢ (ran (ball‘𝐷) ⊆ 𝒫 𝑋 ↔ ∪ ran (ball‘𝐷) ⊆ 𝑋) | |
4 | 2, 3 | sylib 121 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ∪ ran (ball‘𝐷) ⊆ 𝑋) |
5 | 1rp 9593 | . . . 4 ⊢ 1 ∈ ℝ+ | |
6 | blcntrps 13055 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 1 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)1)) | |
7 | 5, 6 | mp3an3 1316 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ (𝑥(ball‘𝐷)1)) |
8 | rpxr 9597 | . . . . 5 ⊢ (1 ∈ ℝ+ → 1 ∈ ℝ*) | |
9 | 5, 8 | ax-mp 5 | . . . 4 ⊢ 1 ∈ ℝ* |
10 | blelrnps 13059 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷)) | |
11 | 9, 10 | mp3an3 1316 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷)) |
12 | elunii 3794 | . . 3 ⊢ ((𝑥 ∈ (𝑥(ball‘𝐷)1) ∧ (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷)) → 𝑥 ∈ ∪ ran (ball‘𝐷)) | |
13 | 7, 11, 12 | syl2anc 409 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ∪ ran (ball‘𝐷)) |
14 | 4, 13 | eqelssd 3161 | 1 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ∪ ran (ball‘𝐷) = 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 𝒫 cpw 3559 ∪ cuni 3789 × cxp 4602 ran crn 4605 ‘cfv 5188 (class class class)co 5842 1c1 7754 ℝ*cxr 7932 ℝ+crp 9589 PsMetcpsmet 12619 ballcbl 12622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-0lt1 7859 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-rp 9590 df-psmet 12627 df-bl 12630 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |