ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unirnblps GIF version

Theorem unirnblps 12591
Description: The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
unirnblps (𝐷 ∈ (PsMet‘𝑋) → ran (ball‘𝐷) = 𝑋)

Proof of Theorem unirnblps
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 blfps 12578 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
21frnd 5282 . . 3 (𝐷 ∈ (PsMet‘𝑋) → ran (ball‘𝐷) ⊆ 𝒫 𝑋)
3 sspwuni 3897 . . 3 (ran (ball‘𝐷) ⊆ 𝒫 𝑋 ran (ball‘𝐷) ⊆ 𝑋)
42, 3sylib 121 . 2 (𝐷 ∈ (PsMet‘𝑋) → ran (ball‘𝐷) ⊆ 𝑋)
5 1rp 9445 . . . 4 1 ∈ ℝ+
6 blcntrps 12584 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋 ∧ 1 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)1))
75, 6mp3an3 1304 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → 𝑥 ∈ (𝑥(ball‘𝐷)1))
8 rpxr 9449 . . . . 5 (1 ∈ ℝ+ → 1 ∈ ℝ*)
95, 8ax-mp 5 . . . 4 1 ∈ ℝ*
10 blelrnps 12588 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋 ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷))
119, 10mp3an3 1304 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷))
12 elunii 3741 . . 3 ((𝑥 ∈ (𝑥(ball‘𝐷)1) ∧ (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷)) → 𝑥 ran (ball‘𝐷))
137, 11, 12syl2anc 408 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → 𝑥 ran (ball‘𝐷))
144, 13eqelssd 3116 1 (𝐷 ∈ (PsMet‘𝑋) → ran (ball‘𝐷) = 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wss 3071  𝒫 cpw 3510   cuni 3736   × cxp 4537  ran crn 4540  cfv 5123  (class class class)co 5774  1c1 7621  *cxr 7799  +crp 9441  PsMetcpsmet 12148  ballcbl 12151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1re 7714  ax-addrcl 7717  ax-0lt1 7726  ax-rnegex 7729
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-rp 9442  df-psmet 12156  df-bl 12159
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator