![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unirnblps | GIF version |
Description: The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
Ref | Expression |
---|---|
unirnblps | ⊢ (𝐷 ∈ (PsMet‘𝑋) → ∪ ran (ball‘𝐷) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blfps 14577 | . . . 4 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋) | |
2 | 1 | frnd 5413 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ran (ball‘𝐷) ⊆ 𝒫 𝑋) |
3 | sspwuni 3997 | . . 3 ⊢ (ran (ball‘𝐷) ⊆ 𝒫 𝑋 ↔ ∪ ran (ball‘𝐷) ⊆ 𝑋) | |
4 | 2, 3 | sylib 122 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ∪ ran (ball‘𝐷) ⊆ 𝑋) |
5 | 1rp 9723 | . . . 4 ⊢ 1 ∈ ℝ+ | |
6 | blcntrps 14583 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 1 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)1)) | |
7 | 5, 6 | mp3an3 1337 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ (𝑥(ball‘𝐷)1)) |
8 | rpxr 9727 | . . . . 5 ⊢ (1 ∈ ℝ+ → 1 ∈ ℝ*) | |
9 | 5, 8 | ax-mp 5 | . . . 4 ⊢ 1 ∈ ℝ* |
10 | blelrnps 14587 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷)) | |
11 | 9, 10 | mp3an3 1337 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷)) |
12 | elunii 3840 | . . 3 ⊢ ((𝑥 ∈ (𝑥(ball‘𝐷)1) ∧ (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷)) → 𝑥 ∈ ∪ ran (ball‘𝐷)) | |
13 | 7, 11, 12 | syl2anc 411 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ∪ ran (ball‘𝐷)) |
14 | 4, 13 | eqelssd 3198 | 1 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ∪ ran (ball‘𝐷) = 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ⊆ wss 3153 𝒫 cpw 3601 ∪ cuni 3835 × cxp 4657 ran crn 4660 ‘cfv 5254 (class class class)co 5918 1c1 7873 ℝ*cxr 8053 ℝ+crp 9719 PsMetcpsmet 14031 ballcbl 14034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 ax-0lt1 7978 ax-rnegex 7981 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-map 6704 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-rp 9720 df-psmet 14039 df-bl 14042 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |