| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unirnbl | GIF version | ||
| Description: The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
| Ref | Expression |
|---|---|
| unirnbl | ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∪ ran (ball‘𝐷) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blf 14997 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋) | |
| 2 | 1 | frnd 5455 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ⊆ 𝒫 𝑋) |
| 3 | sspwuni 4026 | . . 3 ⊢ (ran (ball‘𝐷) ⊆ 𝒫 𝑋 ↔ ∪ ran (ball‘𝐷) ⊆ 𝑋) | |
| 4 | 2, 3 | sylib 122 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∪ ran (ball‘𝐷) ⊆ 𝑋) |
| 5 | 1rp 9814 | . . . 4 ⊢ 1 ∈ ℝ+ | |
| 6 | blcntr 15003 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 1 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)1)) | |
| 7 | 5, 6 | mp3an3 1339 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ (𝑥(ball‘𝐷)1)) |
| 8 | rpxr 9818 | . . . . 5 ⊢ (1 ∈ ℝ+ → 1 ∈ ℝ*) | |
| 9 | 5, 8 | ax-mp 5 | . . . 4 ⊢ 1 ∈ ℝ* |
| 10 | blelrn 15007 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷)) | |
| 11 | 9, 10 | mp3an3 1339 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷)) |
| 12 | elunii 3869 | . . 3 ⊢ ((𝑥 ∈ (𝑥(ball‘𝐷)1) ∧ (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷)) → 𝑥 ∈ ∪ ran (ball‘𝐷)) | |
| 13 | 7, 11, 12 | syl2anc 411 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ∪ ran (ball‘𝐷)) |
| 14 | 4, 13 | eqelssd 3220 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∪ ran (ball‘𝐷) = 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 ⊆ wss 3174 𝒫 cpw 3626 ∪ cuni 3864 × cxp 4691 ran crn 4694 ‘cfv 5290 (class class class)co 5967 1c1 7961 ℝ*cxr 8141 ℝ+crp 9810 ∞Metcxmet 14413 ballcbl 14415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 ax-0lt1 8066 ax-rnegex 8069 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-rp 9811 df-psmet 14420 df-xmet 14421 df-bl 14423 |
| This theorem is referenced by: blbas 15020 mopntopon 15030 elmopn 15033 metss 15081 xmettx 15097 |
| Copyright terms: Public domain | W3C validator |