| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unirnbl | GIF version | ||
| Description: The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
| Ref | Expression |
|---|---|
| unirnbl | ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∪ ran (ball‘𝐷) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blf 14730 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋) | |
| 2 | 1 | frnd 5420 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ⊆ 𝒫 𝑋) |
| 3 | sspwuni 4002 | . . 3 ⊢ (ran (ball‘𝐷) ⊆ 𝒫 𝑋 ↔ ∪ ran (ball‘𝐷) ⊆ 𝑋) | |
| 4 | 2, 3 | sylib 122 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∪ ran (ball‘𝐷) ⊆ 𝑋) |
| 5 | 1rp 9749 | . . . 4 ⊢ 1 ∈ ℝ+ | |
| 6 | blcntr 14736 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 1 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)1)) | |
| 7 | 5, 6 | mp3an3 1337 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ (𝑥(ball‘𝐷)1)) |
| 8 | rpxr 9753 | . . . . 5 ⊢ (1 ∈ ℝ+ → 1 ∈ ℝ*) | |
| 9 | 5, 8 | ax-mp 5 | . . . 4 ⊢ 1 ∈ ℝ* |
| 10 | blelrn 14740 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷)) | |
| 11 | 9, 10 | mp3an3 1337 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷)) |
| 12 | elunii 3845 | . . 3 ⊢ ((𝑥 ∈ (𝑥(ball‘𝐷)1) ∧ (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷)) → 𝑥 ∈ ∪ ran (ball‘𝐷)) | |
| 13 | 7, 11, 12 | syl2anc 411 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ∪ ran (ball‘𝐷)) |
| 14 | 4, 13 | eqelssd 3203 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∪ ran (ball‘𝐷) = 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 𝒫 cpw 3606 ∪ cuni 3840 × cxp 4662 ran crn 4665 ‘cfv 5259 (class class class)co 5925 1c1 7897 ℝ*cxr 8077 ℝ+crp 9745 ∞Metcxmet 14168 ballcbl 14170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 ax-0lt1 8002 ax-rnegex 8005 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-map 6718 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-rp 9746 df-psmet 14175 df-xmet 14176 df-bl 14178 |
| This theorem is referenced by: blbas 14753 mopntopon 14763 elmopn 14766 metss 14814 xmettx 14830 |
| Copyright terms: Public domain | W3C validator |