| Step | Hyp | Ref
 | Expression | 
| 1 |   | imassrn 5020 | 
. . 3
⊢ (𝐹 “ 𝑋) ⊆ ran 𝐹 | 
| 2 |   | eqid 2196 | 
. . . . . 6
⊢
(Base‘𝑀) =
(Base‘𝑀) | 
| 3 |   | eqid 2196 | 
. . . . . 6
⊢
(Base‘𝑁) =
(Base‘𝑁) | 
| 4 | 2, 3 | mhmf 13097 | 
. . . . 5
⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) | 
| 5 | 4 | adantr 276 | 
. . . 4
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) | 
| 6 | 5 | frnd 5417 | 
. . 3
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ran 𝐹 ⊆ (Base‘𝑁)) | 
| 7 | 1, 6 | sstrid 3194 | 
. 2
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹 “ 𝑋) ⊆ (Base‘𝑁)) | 
| 8 |   | eqid 2196 | 
. . . . 5
⊢
(0g‘𝑀) = (0g‘𝑀) | 
| 9 |   | eqid 2196 | 
. . . . 5
⊢
(0g‘𝑁) = (0g‘𝑁) | 
| 10 | 8, 9 | mhm0 13100 | 
. . . 4
⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) → (𝐹‘(0g‘𝑀)) = (0g‘𝑁)) | 
| 11 | 10 | adantr 276 | 
. . 3
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹‘(0g‘𝑀)) = (0g‘𝑁)) | 
| 12 | 5 | ffnd 5408 | 
. . . 4
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝐹 Fn (Base‘𝑀)) | 
| 13 | 2 | submss 13108 | 
. . . . 5
⊢ (𝑋 ∈ (SubMnd‘𝑀) → 𝑋 ⊆ (Base‘𝑀)) | 
| 14 | 13 | adantl 277 | 
. . . 4
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝑋 ⊆ (Base‘𝑀)) | 
| 15 | 8 | subm0cl 13110 | 
. . . . 5
⊢ (𝑋 ∈ (SubMnd‘𝑀) →
(0g‘𝑀)
∈ 𝑋) | 
| 16 | 15 | adantl 277 | 
. . . 4
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (0g‘𝑀) ∈ 𝑋) | 
| 17 |   | fnfvima 5797 | 
. . . 4
⊢ ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑋) → (𝐹‘(0g‘𝑀)) ∈ (𝐹 “ 𝑋)) | 
| 18 | 12, 14, 16, 17 | syl3anc 1249 | 
. . 3
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹‘(0g‘𝑀)) ∈ (𝐹 “ 𝑋)) | 
| 19 | 11, 18 | eqeltrrd 2274 | 
. 2
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (0g‘𝑁) ∈ (𝐹 “ 𝑋)) | 
| 20 |   | simpll 527 | 
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝐹 ∈ (𝑀 MndHom 𝑁)) | 
| 21 | 14 | adantr 276 | 
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑋 ⊆ (Base‘𝑀)) | 
| 22 |   | simprl 529 | 
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑧 ∈ 𝑋) | 
| 23 | 21, 22 | sseldd 3184 | 
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑧 ∈ (Base‘𝑀)) | 
| 24 |   | simprr 531 | 
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑥 ∈ 𝑋) | 
| 25 | 21, 24 | sseldd 3184 | 
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑥 ∈ (Base‘𝑀)) | 
| 26 |   | eqid 2196 | 
. . . . . . . . . 10
⊢
(+g‘𝑀) = (+g‘𝑀) | 
| 27 |   | eqid 2196 | 
. . . . . . . . . 10
⊢
(+g‘𝑁) = (+g‘𝑁) | 
| 28 | 2, 26, 27 | mhmlin 13099 | 
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑧 ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐹‘(𝑧(+g‘𝑀)𝑥)) = ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥))) | 
| 29 | 20, 23, 25, 28 | syl3anc 1249 | 
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝐹‘(𝑧(+g‘𝑀)𝑥)) = ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥))) | 
| 30 | 12 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝐹 Fn (Base‘𝑀)) | 
| 31 | 26 | submcl 13111 | 
. . . . . . . . . . 11
⊢ ((𝑋 ∈ (SubMnd‘𝑀) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧(+g‘𝑀)𝑥) ∈ 𝑋) | 
| 32 | 31 | 3expb 1206 | 
. . . . . . . . . 10
⊢ ((𝑋 ∈ (SubMnd‘𝑀) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝑧(+g‘𝑀)𝑥) ∈ 𝑋) | 
| 33 | 32 | adantll 476 | 
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝑧(+g‘𝑀)𝑥) ∈ 𝑋) | 
| 34 |   | fnfvima 5797 | 
. . . . . . . . 9
⊢ ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀) ∧ (𝑧(+g‘𝑀)𝑥) ∈ 𝑋) → (𝐹‘(𝑧(+g‘𝑀)𝑥)) ∈ (𝐹 “ 𝑋)) | 
| 35 | 30, 21, 33, 34 | syl3anc 1249 | 
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝐹‘(𝑧(+g‘𝑀)𝑥)) ∈ (𝐹 “ 𝑋)) | 
| 36 | 29, 35 | eqeltrrd 2274 | 
. . . . . . 7
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋)) | 
| 37 | 36 | anassrs 400 | 
. . . . . 6
⊢ ((((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋)) | 
| 38 | 37 | ralrimiva 2570 | 
. . . . 5
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ 𝑧 ∈ 𝑋) → ∀𝑥 ∈ 𝑋 ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋)) | 
| 39 |   | oveq2 5930 | 
. . . . . . . . 9
⊢ (𝑦 = (𝐹‘𝑥) → ((𝐹‘𝑧)(+g‘𝑁)𝑦) = ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥))) | 
| 40 | 39 | eleq1d 2265 | 
. . . . . . . 8
⊢ (𝑦 = (𝐹‘𝑥) → (((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋))) | 
| 41 | 40 | ralima 5802 | 
. . . . . . 7
⊢ ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋))) | 
| 42 | 12, 14, 41 | syl2anc 411 | 
. . . . . 6
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋))) | 
| 43 | 42 | adantr 276 | 
. . . . 5
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ 𝑧 ∈ 𝑋) → (∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋))) | 
| 44 | 38, 43 | mpbird 167 | 
. . . 4
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ 𝑧 ∈ 𝑋) → ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)) | 
| 45 | 44 | ralrimiva 2570 | 
. . 3
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ∀𝑧 ∈ 𝑋 ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)) | 
| 46 |   | oveq1 5929 | 
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑧) → (𝑥(+g‘𝑁)𝑦) = ((𝐹‘𝑧)(+g‘𝑁)𝑦)) | 
| 47 | 46 | eleq1d 2265 | 
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑧) → ((𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋))) | 
| 48 | 47 | ralbidv 2497 | 
. . . . 5
⊢ (𝑥 = (𝐹‘𝑧) → (∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋))) | 
| 49 | 48 | ralima 5802 | 
. . . 4
⊢ ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑧 ∈ 𝑋 ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋))) | 
| 50 | 12, 14, 49 | syl2anc 411 | 
. . 3
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑧 ∈ 𝑋 ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋))) | 
| 51 | 45, 50 | mpbird 167 | 
. 2
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)) | 
| 52 |   | mhmrcl2 13096 | 
. . . 4
⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝑁 ∈ Mnd) | 
| 53 | 52 | adantr 276 | 
. . 3
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝑁 ∈ Mnd) | 
| 54 | 3, 9, 27 | issubm 13104 | 
. . 3
⊢ (𝑁 ∈ Mnd → ((𝐹 “ 𝑋) ∈ (SubMnd‘𝑁) ↔ ((𝐹 “ 𝑋) ⊆ (Base‘𝑁) ∧ (0g‘𝑁) ∈ (𝐹 “ 𝑋) ∧ ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)))) | 
| 55 | 53, 54 | syl 14 | 
. 2
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ((𝐹 “ 𝑋) ∈ (SubMnd‘𝑁) ↔ ((𝐹 “ 𝑋) ⊆ (Base‘𝑁) ∧ (0g‘𝑁) ∈ (𝐹 “ 𝑋) ∧ ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)))) | 
| 56 | 7, 19, 51, 55 | mpbir3and 1182 | 
1
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubMnd‘𝑁)) |