ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmima GIF version

Theorem mhmima 13490
Description: The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
mhmima ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹𝑋) ∈ (SubMnd‘𝑁))

Proof of Theorem mhmima
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5055 . . 3 (𝐹𝑋) ⊆ ran 𝐹
2 eqid 2209 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2209 . . . . . 6 (Base‘𝑁) = (Base‘𝑁)
42, 3mhmf 13464 . . . . 5 (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
54adantr 276 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
65frnd 5459 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ran 𝐹 ⊆ (Base‘𝑁))
71, 6sstrid 3215 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹𝑋) ⊆ (Base‘𝑁))
8 eqid 2209 . . . . 5 (0g𝑀) = (0g𝑀)
9 eqid 2209 . . . . 5 (0g𝑁) = (0g𝑁)
108, 9mhm0 13467 . . . 4 (𝐹 ∈ (𝑀 MndHom 𝑁) → (𝐹‘(0g𝑀)) = (0g𝑁))
1110adantr 276 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹‘(0g𝑀)) = (0g𝑁))
125ffnd 5450 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝐹 Fn (Base‘𝑀))
132submss 13475 . . . . 5 (𝑋 ∈ (SubMnd‘𝑀) → 𝑋 ⊆ (Base‘𝑀))
1413adantl 277 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝑋 ⊆ (Base‘𝑀))
158subm0cl 13477 . . . . 5 (𝑋 ∈ (SubMnd‘𝑀) → (0g𝑀) ∈ 𝑋)
1615adantl 277 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (0g𝑀) ∈ 𝑋)
17 fnfvima 5847 . . . 4 ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑋) → (𝐹‘(0g𝑀)) ∈ (𝐹𝑋))
1812, 14, 16, 17syl3anc 1252 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹‘(0g𝑀)) ∈ (𝐹𝑋))
1911, 18eqeltrrd 2287 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (0g𝑁) ∈ (𝐹𝑋))
20 simpll 527 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝐹 ∈ (𝑀 MndHom 𝑁))
2114adantr 276 . . . . . . . . . 10 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑋 ⊆ (Base‘𝑀))
22 simprl 529 . . . . . . . . . 10 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑧𝑋)
2321, 22sseldd 3205 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑧 ∈ (Base‘𝑀))
24 simprr 531 . . . . . . . . . 10 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑥𝑋)
2521, 24sseldd 3205 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑥 ∈ (Base‘𝑀))
26 eqid 2209 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
27 eqid 2209 . . . . . . . . . 10 (+g𝑁) = (+g𝑁)
282, 26, 27mhmlin 13466 . . . . . . . . 9 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑧 ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐹‘(𝑧(+g𝑀)𝑥)) = ((𝐹𝑧)(+g𝑁)(𝐹𝑥)))
2920, 23, 25, 28syl3anc 1252 . . . . . . . 8 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → (𝐹‘(𝑧(+g𝑀)𝑥)) = ((𝐹𝑧)(+g𝑁)(𝐹𝑥)))
3012adantr 276 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝐹 Fn (Base‘𝑀))
3126submcl 13478 . . . . . . . . . . 11 ((𝑋 ∈ (SubMnd‘𝑀) ∧ 𝑧𝑋𝑥𝑋) → (𝑧(+g𝑀)𝑥) ∈ 𝑋)
32313expb 1209 . . . . . . . . . 10 ((𝑋 ∈ (SubMnd‘𝑀) ∧ (𝑧𝑋𝑥𝑋)) → (𝑧(+g𝑀)𝑥) ∈ 𝑋)
3332adantll 476 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → (𝑧(+g𝑀)𝑥) ∈ 𝑋)
34 fnfvima 5847 . . . . . . . . 9 ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀) ∧ (𝑧(+g𝑀)𝑥) ∈ 𝑋) → (𝐹‘(𝑧(+g𝑀)𝑥)) ∈ (𝐹𝑋))
3530, 21, 33, 34syl3anc 1252 . . . . . . . 8 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → (𝐹‘(𝑧(+g𝑀)𝑥)) ∈ (𝐹𝑋))
3629, 35eqeltrrd 2287 . . . . . . 7 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋))
3736anassrs 400 . . . . . 6 ((((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ 𝑧𝑋) ∧ 𝑥𝑋) → ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋))
3837ralrimiva 2583 . . . . 5 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ 𝑧𝑋) → ∀𝑥𝑋 ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋))
39 oveq2 5982 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → ((𝐹𝑧)(+g𝑁)𝑦) = ((𝐹𝑧)(+g𝑁)(𝐹𝑥)))
4039eleq1d 2278 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋)))
4140ralima 5852 . . . . . . 7 ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥𝑋 ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋)))
4212, 14, 41syl2anc 411 . . . . . 6 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥𝑋 ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋)))
4342adantr 276 . . . . 5 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ 𝑧𝑋) → (∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥𝑋 ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋)))
4438, 43mpbird 167 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ 𝑧𝑋) → ∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋))
4544ralrimiva 2583 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ∀𝑧𝑋𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋))
46 oveq1 5981 . . . . . . 7 (𝑥 = (𝐹𝑧) → (𝑥(+g𝑁)𝑦) = ((𝐹𝑧)(+g𝑁)𝑦))
4746eleq1d 2278 . . . . . 6 (𝑥 = (𝐹𝑧) → ((𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋)))
4847ralbidv 2510 . . . . 5 (𝑥 = (𝐹𝑧) → (∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋)))
4948ralima 5852 . . . 4 ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑧𝑋𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋)))
5012, 14, 49syl2anc 411 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑧𝑋𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋)))
5145, 50mpbird 167 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋))
52 mhmrcl2 13463 . . . 4 (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝑁 ∈ Mnd)
5352adantr 276 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝑁 ∈ Mnd)
543, 9, 27issubm 13471 . . 3 (𝑁 ∈ Mnd → ((𝐹𝑋) ∈ (SubMnd‘𝑁) ↔ ((𝐹𝑋) ⊆ (Base‘𝑁) ∧ (0g𝑁) ∈ (𝐹𝑋) ∧ ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋))))
5553, 54syl 14 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ((𝐹𝑋) ∈ (SubMnd‘𝑁) ↔ ((𝐹𝑋) ⊆ (Base‘𝑁) ∧ (0g𝑁) ∈ (𝐹𝑋) ∧ ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋))))
567, 19, 51, 55mpbir3and 1185 1 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹𝑋) ∈ (SubMnd‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 983   = wceq 1375  wcel 2180  wral 2488  wss 3177  ran crn 4697  cima 4699   Fn wfn 5289  wf 5290  cfv 5294  (class class class)co 5974  Basecbs 12998  +gcplusg 13076  0gc0g 13255  Mndcmnd 13415   MndHom cmhm 13456  SubMndcsubmnd 13457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-map 6767  df-inn 9079  df-ndx 13001  df-slot 13002  df-base 13004  df-mhm 13458  df-submnd 13459
This theorem is referenced by:  rhmima  14180
  Copyright terms: Public domain W3C validator