ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmima GIF version

Theorem mhmima 12880
Description: The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
mhmima ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) β†’ (𝐹 β€œ 𝑋) ∈ (SubMndβ€˜π‘))

Proof of Theorem mhmima
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 4983 . . 3 (𝐹 β€œ 𝑋) βŠ† ran 𝐹
2 eqid 2177 . . . . . 6 (Baseβ€˜π‘€) = (Baseβ€˜π‘€)
3 eqid 2177 . . . . . 6 (Baseβ€˜π‘) = (Baseβ€˜π‘)
42, 3mhmf 12861 . . . . 5 (𝐹 ∈ (𝑀 MndHom 𝑁) β†’ 𝐹:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘))
54adantr 276 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) β†’ 𝐹:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘))
65frnd 5377 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) β†’ ran 𝐹 βŠ† (Baseβ€˜π‘))
71, 6sstrid 3168 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) β†’ (𝐹 β€œ 𝑋) βŠ† (Baseβ€˜π‘))
8 eqid 2177 . . . . 5 (0gβ€˜π‘€) = (0gβ€˜π‘€)
9 eqid 2177 . . . . 5 (0gβ€˜π‘) = (0gβ€˜π‘)
108, 9mhm0 12864 . . . 4 (𝐹 ∈ (𝑀 MndHom 𝑁) β†’ (πΉβ€˜(0gβ€˜π‘€)) = (0gβ€˜π‘))
1110adantr 276 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) β†’ (πΉβ€˜(0gβ€˜π‘€)) = (0gβ€˜π‘))
125ffnd 5368 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) β†’ 𝐹 Fn (Baseβ€˜π‘€))
132submss 12872 . . . . 5 (𝑋 ∈ (SubMndβ€˜π‘€) β†’ 𝑋 βŠ† (Baseβ€˜π‘€))
1413adantl 277 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) β†’ 𝑋 βŠ† (Baseβ€˜π‘€))
158subm0cl 12874 . . . . 5 (𝑋 ∈ (SubMndβ€˜π‘€) β†’ (0gβ€˜π‘€) ∈ 𝑋)
1615adantl 277 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) β†’ (0gβ€˜π‘€) ∈ 𝑋)
17 fnfvima 5753 . . . 4 ((𝐹 Fn (Baseβ€˜π‘€) ∧ 𝑋 βŠ† (Baseβ€˜π‘€) ∧ (0gβ€˜π‘€) ∈ 𝑋) β†’ (πΉβ€˜(0gβ€˜π‘€)) ∈ (𝐹 β€œ 𝑋))
1812, 14, 16, 17syl3anc 1238 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) β†’ (πΉβ€˜(0gβ€˜π‘€)) ∈ (𝐹 β€œ 𝑋))
1911, 18eqeltrrd 2255 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) β†’ (0gβ€˜π‘) ∈ (𝐹 β€œ 𝑋))
20 simpll 527 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) ∧ (𝑧 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋)) β†’ 𝐹 ∈ (𝑀 MndHom 𝑁))
2114adantr 276 . . . . . . . . . 10 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) ∧ (𝑧 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋)) β†’ 𝑋 βŠ† (Baseβ€˜π‘€))
22 simprl 529 . . . . . . . . . 10 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) ∧ (𝑧 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋)) β†’ 𝑧 ∈ 𝑋)
2321, 22sseldd 3158 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) ∧ (𝑧 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋)) β†’ 𝑧 ∈ (Baseβ€˜π‘€))
24 simprr 531 . . . . . . . . . 10 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) ∧ (𝑧 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋)) β†’ π‘₯ ∈ 𝑋)
2521, 24sseldd 3158 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) ∧ (𝑧 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋)) β†’ π‘₯ ∈ (Baseβ€˜π‘€))
26 eqid 2177 . . . . . . . . . 10 (+gβ€˜π‘€) = (+gβ€˜π‘€)
27 eqid 2177 . . . . . . . . . 10 (+gβ€˜π‘) = (+gβ€˜π‘)
282, 26, 27mhmlin 12863 . . . . . . . . 9 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑧 ∈ (Baseβ€˜π‘€) ∧ π‘₯ ∈ (Baseβ€˜π‘€)) β†’ (πΉβ€˜(𝑧(+gβ€˜π‘€)π‘₯)) = ((πΉβ€˜π‘§)(+gβ€˜π‘)(πΉβ€˜π‘₯)))
2920, 23, 25, 28syl3anc 1238 . . . . . . . 8 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) ∧ (𝑧 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋)) β†’ (πΉβ€˜(𝑧(+gβ€˜π‘€)π‘₯)) = ((πΉβ€˜π‘§)(+gβ€˜π‘)(πΉβ€˜π‘₯)))
3012adantr 276 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) ∧ (𝑧 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋)) β†’ 𝐹 Fn (Baseβ€˜π‘€))
3126submcl 12875 . . . . . . . . . . 11 ((𝑋 ∈ (SubMndβ€˜π‘€) ∧ 𝑧 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋) β†’ (𝑧(+gβ€˜π‘€)π‘₯) ∈ 𝑋)
32313expb 1204 . . . . . . . . . 10 ((𝑋 ∈ (SubMndβ€˜π‘€) ∧ (𝑧 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋)) β†’ (𝑧(+gβ€˜π‘€)π‘₯) ∈ 𝑋)
3332adantll 476 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) ∧ (𝑧 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋)) β†’ (𝑧(+gβ€˜π‘€)π‘₯) ∈ 𝑋)
34 fnfvima 5753 . . . . . . . . 9 ((𝐹 Fn (Baseβ€˜π‘€) ∧ 𝑋 βŠ† (Baseβ€˜π‘€) ∧ (𝑧(+gβ€˜π‘€)π‘₯) ∈ 𝑋) β†’ (πΉβ€˜(𝑧(+gβ€˜π‘€)π‘₯)) ∈ (𝐹 β€œ 𝑋))
3530, 21, 33, 34syl3anc 1238 . . . . . . . 8 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) ∧ (𝑧 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋)) β†’ (πΉβ€˜(𝑧(+gβ€˜π‘€)π‘₯)) ∈ (𝐹 β€œ 𝑋))
3629, 35eqeltrrd 2255 . . . . . . 7 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) ∧ (𝑧 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋)) β†’ ((πΉβ€˜π‘§)(+gβ€˜π‘)(πΉβ€˜π‘₯)) ∈ (𝐹 β€œ 𝑋))
3736anassrs 400 . . . . . 6 ((((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) ∧ 𝑧 ∈ 𝑋) ∧ π‘₯ ∈ 𝑋) β†’ ((πΉβ€˜π‘§)(+gβ€˜π‘)(πΉβ€˜π‘₯)) ∈ (𝐹 β€œ 𝑋))
3837ralrimiva 2550 . . . . 5 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) ∧ 𝑧 ∈ 𝑋) β†’ βˆ€π‘₯ ∈ 𝑋 ((πΉβ€˜π‘§)(+gβ€˜π‘)(πΉβ€˜π‘₯)) ∈ (𝐹 β€œ 𝑋))
39 oveq2 5885 . . . . . . . . 9 (𝑦 = (πΉβ€˜π‘₯) β†’ ((πΉβ€˜π‘§)(+gβ€˜π‘)𝑦) = ((πΉβ€˜π‘§)(+gβ€˜π‘)(πΉβ€˜π‘₯)))
4039eleq1d 2246 . . . . . . . 8 (𝑦 = (πΉβ€˜π‘₯) β†’ (((πΉβ€˜π‘§)(+gβ€˜π‘)𝑦) ∈ (𝐹 β€œ 𝑋) ↔ ((πΉβ€˜π‘§)(+gβ€˜π‘)(πΉβ€˜π‘₯)) ∈ (𝐹 β€œ 𝑋)))
4140ralima 5758 . . . . . . 7 ((𝐹 Fn (Baseβ€˜π‘€) ∧ 𝑋 βŠ† (Baseβ€˜π‘€)) β†’ (βˆ€π‘¦ ∈ (𝐹 β€œ 𝑋)((πΉβ€˜π‘§)(+gβ€˜π‘)𝑦) ∈ (𝐹 β€œ 𝑋) ↔ βˆ€π‘₯ ∈ 𝑋 ((πΉβ€˜π‘§)(+gβ€˜π‘)(πΉβ€˜π‘₯)) ∈ (𝐹 β€œ 𝑋)))
4212, 14, 41syl2anc 411 . . . . . 6 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) β†’ (βˆ€π‘¦ ∈ (𝐹 β€œ 𝑋)((πΉβ€˜π‘§)(+gβ€˜π‘)𝑦) ∈ (𝐹 β€œ 𝑋) ↔ βˆ€π‘₯ ∈ 𝑋 ((πΉβ€˜π‘§)(+gβ€˜π‘)(πΉβ€˜π‘₯)) ∈ (𝐹 β€œ 𝑋)))
4342adantr 276 . . . . 5 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) ∧ 𝑧 ∈ 𝑋) β†’ (βˆ€π‘¦ ∈ (𝐹 β€œ 𝑋)((πΉβ€˜π‘§)(+gβ€˜π‘)𝑦) ∈ (𝐹 β€œ 𝑋) ↔ βˆ€π‘₯ ∈ 𝑋 ((πΉβ€˜π‘§)(+gβ€˜π‘)(πΉβ€˜π‘₯)) ∈ (𝐹 β€œ 𝑋)))
4438, 43mpbird 167 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) ∧ 𝑧 ∈ 𝑋) β†’ βˆ€π‘¦ ∈ (𝐹 β€œ 𝑋)((πΉβ€˜π‘§)(+gβ€˜π‘)𝑦) ∈ (𝐹 β€œ 𝑋))
4544ralrimiva 2550 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) β†’ βˆ€π‘§ ∈ 𝑋 βˆ€π‘¦ ∈ (𝐹 β€œ 𝑋)((πΉβ€˜π‘§)(+gβ€˜π‘)𝑦) ∈ (𝐹 β€œ 𝑋))
46 oveq1 5884 . . . . . . 7 (π‘₯ = (πΉβ€˜π‘§) β†’ (π‘₯(+gβ€˜π‘)𝑦) = ((πΉβ€˜π‘§)(+gβ€˜π‘)𝑦))
4746eleq1d 2246 . . . . . 6 (π‘₯ = (πΉβ€˜π‘§) β†’ ((π‘₯(+gβ€˜π‘)𝑦) ∈ (𝐹 β€œ 𝑋) ↔ ((πΉβ€˜π‘§)(+gβ€˜π‘)𝑦) ∈ (𝐹 β€œ 𝑋)))
4847ralbidv 2477 . . . . 5 (π‘₯ = (πΉβ€˜π‘§) β†’ (βˆ€π‘¦ ∈ (𝐹 β€œ 𝑋)(π‘₯(+gβ€˜π‘)𝑦) ∈ (𝐹 β€œ 𝑋) ↔ βˆ€π‘¦ ∈ (𝐹 β€œ 𝑋)((πΉβ€˜π‘§)(+gβ€˜π‘)𝑦) ∈ (𝐹 β€œ 𝑋)))
4948ralima 5758 . . . 4 ((𝐹 Fn (Baseβ€˜π‘€) ∧ 𝑋 βŠ† (Baseβ€˜π‘€)) β†’ (βˆ€π‘₯ ∈ (𝐹 β€œ 𝑋)βˆ€π‘¦ ∈ (𝐹 β€œ 𝑋)(π‘₯(+gβ€˜π‘)𝑦) ∈ (𝐹 β€œ 𝑋) ↔ βˆ€π‘§ ∈ 𝑋 βˆ€π‘¦ ∈ (𝐹 β€œ 𝑋)((πΉβ€˜π‘§)(+gβ€˜π‘)𝑦) ∈ (𝐹 β€œ 𝑋)))
5012, 14, 49syl2anc 411 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) β†’ (βˆ€π‘₯ ∈ (𝐹 β€œ 𝑋)βˆ€π‘¦ ∈ (𝐹 β€œ 𝑋)(π‘₯(+gβ€˜π‘)𝑦) ∈ (𝐹 β€œ 𝑋) ↔ βˆ€π‘§ ∈ 𝑋 βˆ€π‘¦ ∈ (𝐹 β€œ 𝑋)((πΉβ€˜π‘§)(+gβ€˜π‘)𝑦) ∈ (𝐹 β€œ 𝑋)))
5145, 50mpbird 167 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) β†’ βˆ€π‘₯ ∈ (𝐹 β€œ 𝑋)βˆ€π‘¦ ∈ (𝐹 β€œ 𝑋)(π‘₯(+gβ€˜π‘)𝑦) ∈ (𝐹 β€œ 𝑋))
52 mhmrcl2 12860 . . . 4 (𝐹 ∈ (𝑀 MndHom 𝑁) β†’ 𝑁 ∈ Mnd)
5352adantr 276 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) β†’ 𝑁 ∈ Mnd)
543, 9, 27issubm 12868 . . 3 (𝑁 ∈ Mnd β†’ ((𝐹 β€œ 𝑋) ∈ (SubMndβ€˜π‘) ↔ ((𝐹 β€œ 𝑋) βŠ† (Baseβ€˜π‘) ∧ (0gβ€˜π‘) ∈ (𝐹 β€œ 𝑋) ∧ βˆ€π‘₯ ∈ (𝐹 β€œ 𝑋)βˆ€π‘¦ ∈ (𝐹 β€œ 𝑋)(π‘₯(+gβ€˜π‘)𝑦) ∈ (𝐹 β€œ 𝑋))))
5553, 54syl 14 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) β†’ ((𝐹 β€œ 𝑋) ∈ (SubMndβ€˜π‘) ↔ ((𝐹 β€œ 𝑋) βŠ† (Baseβ€˜π‘) ∧ (0gβ€˜π‘) ∈ (𝐹 β€œ 𝑋) ∧ βˆ€π‘₯ ∈ (𝐹 β€œ 𝑋)βˆ€π‘¦ ∈ (𝐹 β€œ 𝑋)(π‘₯(+gβ€˜π‘)𝑦) ∈ (𝐹 β€œ 𝑋))))
567, 19, 51, 55mpbir3and 1180 1 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMndβ€˜π‘€)) β†’ (𝐹 β€œ 𝑋) ∈ (SubMndβ€˜π‘))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455   βŠ† wss 3131  ran crn 4629   β€œ cima 4631   Fn wfn 5213  βŸΆwf 5214  β€˜cfv 5218  (class class class)co 5877  Basecbs 12464  +gcplusg 12538  0gc0g 12710  Mndcmnd 12822   MndHom cmhm 12854  SubMndcsubmnd 12855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-mhm 12856  df-submnd 12857
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator