ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rest0 GIF version

Theorem rest0 12130
Description: The subspace topology induced by the topology 𝐽 on the empty set. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
rest0 (𝐽 ∈ Top → (𝐽t ∅) = {∅})

Proof of Theorem rest0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0ex 3995 . . . 4 ∅ ∈ V
2 restval 11908 . . . 4 ((𝐽 ∈ Top ∧ ∅ ∈ V) → (𝐽t ∅) = ran (𝑥𝐽 ↦ (𝑥 ∩ ∅)))
31, 2mpan2 419 . . 3 (𝐽 ∈ Top → (𝐽t ∅) = ran (𝑥𝐽 ↦ (𝑥 ∩ ∅)))
4 in0 3344 . . . . . . 7 (𝑥 ∩ ∅) = ∅
51elsn2 3506 . . . . . . 7 ((𝑥 ∩ ∅) ∈ {∅} ↔ (𝑥 ∩ ∅) = ∅)
64, 5mpbir 145 . . . . . 6 (𝑥 ∩ ∅) ∈ {∅}
76a1i 9 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑥 ∩ ∅) ∈ {∅})
87fmpttd 5507 . . . 4 (𝐽 ∈ Top → (𝑥𝐽 ↦ (𝑥 ∩ ∅)):𝐽⟶{∅})
98frnd 5218 . . 3 (𝐽 ∈ Top → ran (𝑥𝐽 ↦ (𝑥 ∩ ∅)) ⊆ {∅})
103, 9eqsstrd 3083 . 2 (𝐽 ∈ Top → (𝐽t ∅) ⊆ {∅})
11 resttop 12121 . . . . 5 ((𝐽 ∈ Top ∧ ∅ ∈ V) → (𝐽t ∅) ∈ Top)
121, 11mpan2 419 . . . 4 (𝐽 ∈ Top → (𝐽t ∅) ∈ Top)
13 0opn 11955 . . . 4 ((𝐽t ∅) ∈ Top → ∅ ∈ (𝐽t ∅))
1412, 13syl 14 . . 3 (𝐽 ∈ Top → ∅ ∈ (𝐽t ∅))
1514snssd 3612 . 2 (𝐽 ∈ Top → {∅} ⊆ (𝐽t ∅))
1610, 15eqssd 3064 1 (𝐽 ∈ Top → (𝐽t ∅) = {∅})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299  wcel 1448  Vcvv 2641  cin 3020  c0 3310  {csn 3474  cmpt 3929  ran crn 4478  (class class class)co 5706  t crest 11902  Topctop 11946
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-rest 11904  df-topgen 11923  df-top 11947  df-bases 11992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator