![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rest0 | GIF version |
Description: The subspace topology induced by the topology 𝐽 on the empty set. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 1-May-2015.) |
Ref | Expression |
---|---|
rest0 | ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4157 | . . . 4 ⊢ ∅ ∈ V | |
2 | restval 12859 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∅ ∈ V) → (𝐽 ↾t ∅) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ ∅))) | |
3 | 1, 2 | mpan2 425 | . . 3 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ ∅))) |
4 | in0 3482 | . . . . . . 7 ⊢ (𝑥 ∩ ∅) = ∅ | |
5 | 1 | elsn2 3653 | . . . . . . 7 ⊢ ((𝑥 ∩ ∅) ∈ {∅} ↔ (𝑥 ∩ ∅) = ∅) |
6 | 4, 5 | mpbir 146 | . . . . . 6 ⊢ (𝑥 ∩ ∅) ∈ {∅} |
7 | 6 | a1i 9 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ ∅) ∈ {∅}) |
8 | 7 | fmpttd 5714 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ ∅)):𝐽⟶{∅}) |
9 | 8 | frnd 5414 | . . 3 ⊢ (𝐽 ∈ Top → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ ∅)) ⊆ {∅}) |
10 | 3, 9 | eqsstrd 3216 | . 2 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) ⊆ {∅}) |
11 | resttop 14349 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ∅ ∈ V) → (𝐽 ↾t ∅) ∈ Top) | |
12 | 1, 11 | mpan2 425 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) ∈ Top) |
13 | 0opn 14185 | . . . 4 ⊢ ((𝐽 ↾t ∅) ∈ Top → ∅ ∈ (𝐽 ↾t ∅)) | |
14 | 12, 13 | syl 14 | . . 3 ⊢ (𝐽 ∈ Top → ∅ ∈ (𝐽 ↾t ∅)) |
15 | 14 | snssd 3764 | . 2 ⊢ (𝐽 ∈ Top → {∅} ⊆ (𝐽 ↾t ∅)) |
16 | 10, 15 | eqssd 3197 | 1 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) = {∅}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∩ cin 3153 ∅c0 3447 {csn 3619 ↦ cmpt 4091 ran crn 4661 (class class class)co 5919 ↾t crest 12853 Topctop 14176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-rest 12855 df-topgen 12874 df-top 14177 df-bases 14222 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |