ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rest0 GIF version

Theorem rest0 14358
Description: The subspace topology induced by the topology 𝐽 on the empty set. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
rest0 (𝐽 ∈ Top → (𝐽t ∅) = {∅})

Proof of Theorem rest0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0ex 4157 . . . 4 ∅ ∈ V
2 restval 12859 . . . 4 ((𝐽 ∈ Top ∧ ∅ ∈ V) → (𝐽t ∅) = ran (𝑥𝐽 ↦ (𝑥 ∩ ∅)))
31, 2mpan2 425 . . 3 (𝐽 ∈ Top → (𝐽t ∅) = ran (𝑥𝐽 ↦ (𝑥 ∩ ∅)))
4 in0 3482 . . . . . . 7 (𝑥 ∩ ∅) = ∅
51elsn2 3653 . . . . . . 7 ((𝑥 ∩ ∅) ∈ {∅} ↔ (𝑥 ∩ ∅) = ∅)
64, 5mpbir 146 . . . . . 6 (𝑥 ∩ ∅) ∈ {∅}
76a1i 9 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑥 ∩ ∅) ∈ {∅})
87fmpttd 5714 . . . 4 (𝐽 ∈ Top → (𝑥𝐽 ↦ (𝑥 ∩ ∅)):𝐽⟶{∅})
98frnd 5414 . . 3 (𝐽 ∈ Top → ran (𝑥𝐽 ↦ (𝑥 ∩ ∅)) ⊆ {∅})
103, 9eqsstrd 3216 . 2 (𝐽 ∈ Top → (𝐽t ∅) ⊆ {∅})
11 resttop 14349 . . . . 5 ((𝐽 ∈ Top ∧ ∅ ∈ V) → (𝐽t ∅) ∈ Top)
121, 11mpan2 425 . . . 4 (𝐽 ∈ Top → (𝐽t ∅) ∈ Top)
13 0opn 14185 . . . 4 ((𝐽t ∅) ∈ Top → ∅ ∈ (𝐽t ∅))
1412, 13syl 14 . . 3 (𝐽 ∈ Top → ∅ ∈ (𝐽t ∅))
1514snssd 3764 . 2 (𝐽 ∈ Top → {∅} ⊆ (𝐽t ∅))
1610, 15eqssd 3197 1 (𝐽 ∈ Top → (𝐽t ∅) = {∅})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  cin 3153  c0 3447  {csn 3619  cmpt 4091  ran crn 4661  (class class class)co 5919  t crest 12853  Topctop 14176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-rest 12855  df-topgen 12874  df-top 14177  df-bases 14222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator