![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ennnfonelemfun | GIF version |
Description: Lemma for ennnfone 12582. 𝐿 is a function. (Contributed by Jim Kingdon, 16-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
ennnfone.l | ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) |
Ref | Expression |
---|---|
ennnfonelemfun | ⊢ (𝜑 → Fun 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemh.dceq | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
2 | ennnfonelemh.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
3 | ennnfonelemh.ne | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
4 | ennnfonelemh.g | . . . . . . . . 9 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) | |
5 | ennnfonelemh.n | . . . . . . . . 9 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
6 | ennnfonelemh.j | . . . . . . . . 9 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
7 | ennnfonelemh.h | . . . . . . . . 9 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ennnfonelemh 12561 | . . . . . . . 8 ⊢ (𝜑 → 𝐻:ℕ0⟶(𝐴 ↑pm ω)) |
9 | 8 | frnd 5413 | . . . . . . 7 ⊢ (𝜑 → ran 𝐻 ⊆ (𝐴 ↑pm ω)) |
10 | 9 | sselda 3179 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐻) → 𝑠 ∈ (𝐴 ↑pm ω)) |
11 | pmfun 6722 | . . . . . 6 ⊢ (𝑠 ∈ (𝐴 ↑pm ω) → Fun 𝑠) | |
12 | 10, 11 | syl 14 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐻) → Fun 𝑠) |
13 | 1 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
14 | 2 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝐹:ω–onto→𝐴) |
15 | 3 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
16 | simplr 528 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝑠 ∈ ran 𝐻) | |
17 | simpr 110 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝑡 ∈ ran 𝐻) | |
18 | 13, 14, 15, 4, 5, 6, 7, 16, 17 | ennnfonelemrnh 12573 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → (𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠)) |
19 | 18 | ralrimiva 2567 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐻) → ∀𝑡 ∈ ran 𝐻(𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠)) |
20 | 12, 19 | jca 306 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐻) → (Fun 𝑠 ∧ ∀𝑡 ∈ ran 𝐻(𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠))) |
21 | 20 | ralrimiva 2567 | . . 3 ⊢ (𝜑 → ∀𝑠 ∈ ran 𝐻(Fun 𝑠 ∧ ∀𝑡 ∈ ran 𝐻(𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠))) |
22 | fununi 5322 | . . 3 ⊢ (∀𝑠 ∈ ran 𝐻(Fun 𝑠 ∧ ∀𝑡 ∈ ran 𝐻(𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠)) → Fun ∪ ran 𝐻) | |
23 | 21, 22 | syl 14 | . 2 ⊢ (𝜑 → Fun ∪ ran 𝐻) |
24 | ennnfone.l | . . . 4 ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) | |
25 | 8 | ffnd 5404 | . . . . 5 ⊢ (𝜑 → 𝐻 Fn ℕ0) |
26 | fniunfv 5805 | . . . . 5 ⊢ (𝐻 Fn ℕ0 → ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) = ∪ ran 𝐻) | |
27 | 25, 26 | syl 14 | . . . 4 ⊢ (𝜑 → ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) = ∪ ran 𝐻) |
28 | 24, 27 | eqtrid 2238 | . . 3 ⊢ (𝜑 → 𝐿 = ∪ ran 𝐻) |
29 | 28 | funeqd 5276 | . 2 ⊢ (𝜑 → (Fun 𝐿 ↔ Fun ∪ ran 𝐻)) |
30 | 23, 29 | mpbird 167 | 1 ⊢ (𝜑 → Fun 𝐿) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∀wral 2472 ∃wrex 2473 ∪ cun 3151 ⊆ wss 3153 ∅c0 3446 ifcif 3557 {csn 3618 〈cop 3621 ∪ cuni 3835 ∪ ciun 3912 ↦ cmpt 4090 suc csuc 4396 ωcom 4622 ◡ccnv 4658 dom cdm 4659 ran crn 4660 “ cima 4662 Fun wfun 5248 Fn wfn 5249 –onto→wfo 5252 ‘cfv 5254 (class class class)co 5918 ∈ cmpo 5920 freccfrec 6443 ↑pm cpm 6703 0cc0 7872 1c1 7873 + caddc 7875 − cmin 8190 ℕ0cn0 9240 ℤcz 9317 seqcseq 10518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-pm 6705 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 df-seqfrec 10519 |
This theorem is referenced by: ennnfonelemf1 12575 |
Copyright terms: Public domain | W3C validator |