Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemfun GIF version

Theorem ennnfonelemfun 12097
 Description: Lemma for ennnfone 12105. 𝐿 is a function. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfone.l 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
Assertion
Ref Expression
ennnfonelemfun (𝜑 → Fun 𝐿)
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦,𝑗   𝑘,𝐹,𝑛,𝑗   𝑗,𝐺   𝑖,𝐻   𝑗,𝐻,𝑥,𝑦   𝑗,𝐽   𝑥,𝑁,𝑦   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑖,𝑘,𝑛)   𝐴(𝑖,𝑘,𝑛)   𝐹(𝑖)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐻(𝑘,𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐿(𝑥,𝑦,𝑖,𝑗,𝑘,𝑛)   𝑁(𝑖,𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemfun
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . . . . . . 9 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . . . . . . 9 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . . . . . . 9 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . . . . . . 9 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . . . . . . 9 𝐻 = seq0(𝐺, 𝐽)
81, 2, 3, 4, 5, 6, 7ennnfonelemh 12084 . . . . . . . 8 (𝜑𝐻:ℕ0⟶(𝐴pm ω))
98frnd 5322 . . . . . . 7 (𝜑 → ran 𝐻 ⊆ (𝐴pm ω))
109sselda 3124 . . . . . 6 ((𝜑𝑠 ∈ ran 𝐻) → 𝑠 ∈ (𝐴pm ω))
11 pmfun 6602 . . . . . 6 (𝑠 ∈ (𝐴pm ω) → Fun 𝑠)
1210, 11syl 14 . . . . 5 ((𝜑𝑠 ∈ ran 𝐻) → Fun 𝑠)
131ad2antrr 480 . . . . . . 7 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
142ad2antrr 480 . . . . . . 7 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝐹:ω–onto𝐴)
153ad2antrr 480 . . . . . . 7 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
16 simplr 520 . . . . . . 7 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝑠 ∈ ran 𝐻)
17 simpr 109 . . . . . . 7 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝑡 ∈ ran 𝐻)
1813, 14, 15, 4, 5, 6, 7, 16, 17ennnfonelemrnh 12096 . . . . . 6 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → (𝑠𝑡𝑡𝑠))
1918ralrimiva 2527 . . . . 5 ((𝜑𝑠 ∈ ran 𝐻) → ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠))
2012, 19jca 304 . . . 4 ((𝜑𝑠 ∈ ran 𝐻) → (Fun 𝑠 ∧ ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠)))
2120ralrimiva 2527 . . 3 (𝜑 → ∀𝑠 ∈ ran 𝐻(Fun 𝑠 ∧ ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠)))
22 fununi 5231 . . 3 (∀𝑠 ∈ ran 𝐻(Fun 𝑠 ∧ ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠)) → Fun ran 𝐻)
2321, 22syl 14 . 2 (𝜑 → Fun ran 𝐻)
24 ennnfone.l . . . 4 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
258ffnd 5313 . . . . 5 (𝜑𝐻 Fn ℕ0)
26 fniunfv 5703 . . . . 5 (𝐻 Fn ℕ0 𝑖 ∈ ℕ0 (𝐻𝑖) = ran 𝐻)
2725, 26syl 14 . . . 4 (𝜑 𝑖 ∈ ℕ0 (𝐻𝑖) = ran 𝐻)
2824, 27syl5eq 2199 . . 3 (𝜑𝐿 = ran 𝐻)
2928funeqd 5185 . 2 (𝜑 → (Fun 𝐿 ↔ Fun ran 𝐻))
3023, 29mpbird 166 1 (𝜑 → Fun 𝐿)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∨ wo 698  DECID wdc 820   = wceq 1332   ∈ wcel 2125   ≠ wne 2324  ∀wral 2432  ∃wrex 2433   ∪ cun 3096   ⊆ wss 3098  ∅c0 3390  ifcif 3501  {csn 3556  ⟨cop 3559  ∪ cuni 3768  ∪ ciun 3845   ↦ cmpt 4021  suc csuc 4320  ωcom 4543  ◡ccnv 4578  dom cdm 4579  ran crn 4580   “ cima 4582  Fun wfun 5157   Fn wfn 5158  –onto→wfo 5161  ‘cfv 5163  (class class class)co 5814   ∈ cmpo 5816  freccfrec 6327   ↑pm cpm 6583  0cc0 7711  1c1 7712   + caddc 7714   − cmin 8025  ℕ0cn0 9069  ℤcz 9146  seqcseq 10322 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-addass 7813  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-ltadd 7827 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-pm 6585  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-inn 8813  df-n0 9070  df-z 9147  df-uz 9419  df-seqfrec 10323 This theorem is referenced by:  ennnfonelemf1  12098
 Copyright terms: Public domain W3C validator