Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ennnfonelemfun | GIF version |
Description: Lemma for ennnfone 12358. 𝐿 is a function. (Contributed by Jim Kingdon, 16-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
ennnfone.l | ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) |
Ref | Expression |
---|---|
ennnfonelemfun | ⊢ (𝜑 → Fun 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemh.dceq | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
2 | ennnfonelemh.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
3 | ennnfonelemh.ne | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
4 | ennnfonelemh.g | . . . . . . . . 9 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) | |
5 | ennnfonelemh.n | . . . . . . . . 9 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
6 | ennnfonelemh.j | . . . . . . . . 9 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
7 | ennnfonelemh.h | . . . . . . . . 9 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ennnfonelemh 12337 | . . . . . . . 8 ⊢ (𝜑 → 𝐻:ℕ0⟶(𝐴 ↑pm ω)) |
9 | 8 | frnd 5347 | . . . . . . 7 ⊢ (𝜑 → ran 𝐻 ⊆ (𝐴 ↑pm ω)) |
10 | 9 | sselda 3142 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐻) → 𝑠 ∈ (𝐴 ↑pm ω)) |
11 | pmfun 6634 | . . . . . 6 ⊢ (𝑠 ∈ (𝐴 ↑pm ω) → Fun 𝑠) | |
12 | 10, 11 | syl 14 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐻) → Fun 𝑠) |
13 | 1 | ad2antrr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
14 | 2 | ad2antrr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝐹:ω–onto→𝐴) |
15 | 3 | ad2antrr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
16 | simplr 520 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝑠 ∈ ran 𝐻) | |
17 | simpr 109 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝑡 ∈ ran 𝐻) | |
18 | 13, 14, 15, 4, 5, 6, 7, 16, 17 | ennnfonelemrnh 12349 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → (𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠)) |
19 | 18 | ralrimiva 2539 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐻) → ∀𝑡 ∈ ran 𝐻(𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠)) |
20 | 12, 19 | jca 304 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐻) → (Fun 𝑠 ∧ ∀𝑡 ∈ ran 𝐻(𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠))) |
21 | 20 | ralrimiva 2539 | . . 3 ⊢ (𝜑 → ∀𝑠 ∈ ran 𝐻(Fun 𝑠 ∧ ∀𝑡 ∈ ran 𝐻(𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠))) |
22 | fununi 5256 | . . 3 ⊢ (∀𝑠 ∈ ran 𝐻(Fun 𝑠 ∧ ∀𝑡 ∈ ran 𝐻(𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠)) → Fun ∪ ran 𝐻) | |
23 | 21, 22 | syl 14 | . 2 ⊢ (𝜑 → Fun ∪ ran 𝐻) |
24 | ennnfone.l | . . . 4 ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) | |
25 | 8 | ffnd 5338 | . . . . 5 ⊢ (𝜑 → 𝐻 Fn ℕ0) |
26 | fniunfv 5730 | . . . . 5 ⊢ (𝐻 Fn ℕ0 → ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) = ∪ ran 𝐻) | |
27 | 25, 26 | syl 14 | . . . 4 ⊢ (𝜑 → ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) = ∪ ran 𝐻) |
28 | 24, 27 | syl5eq 2211 | . . 3 ⊢ (𝜑 → 𝐿 = ∪ ran 𝐻) |
29 | 28 | funeqd 5210 | . 2 ⊢ (𝜑 → (Fun 𝐿 ↔ Fun ∪ ran 𝐻)) |
30 | 23, 29 | mpbird 166 | 1 ⊢ (𝜑 → Fun 𝐿) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 698 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ∀wral 2444 ∃wrex 2445 ∪ cun 3114 ⊆ wss 3116 ∅c0 3409 ifcif 3520 {csn 3576 〈cop 3579 ∪ cuni 3789 ∪ ciun 3866 ↦ cmpt 4043 suc csuc 4343 ωcom 4567 ◡ccnv 4603 dom cdm 4604 ran crn 4605 “ cima 4607 Fun wfun 5182 Fn wfn 5183 –onto→wfo 5186 ‘cfv 5188 (class class class)co 5842 ∈ cmpo 5844 freccfrec 6358 ↑pm cpm 6615 0cc0 7753 1c1 7754 + caddc 7756 − cmin 8069 ℕ0cn0 9114 ℤcz 9191 seqcseq 10380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pm 6617 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-seqfrec 10381 |
This theorem is referenced by: ennnfonelemf1 12351 |
Copyright terms: Public domain | W3C validator |