Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ennnfonelemfun | GIF version |
Description: Lemma for ennnfone 12105. 𝐿 is a function. (Contributed by Jim Kingdon, 16-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
ennnfone.l | ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) |
Ref | Expression |
---|---|
ennnfonelemfun | ⊢ (𝜑 → Fun 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemh.dceq | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
2 | ennnfonelemh.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
3 | ennnfonelemh.ne | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
4 | ennnfonelemh.g | . . . . . . . . 9 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) | |
5 | ennnfonelemh.n | . . . . . . . . 9 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
6 | ennnfonelemh.j | . . . . . . . . 9 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
7 | ennnfonelemh.h | . . . . . . . . 9 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ennnfonelemh 12084 | . . . . . . . 8 ⊢ (𝜑 → 𝐻:ℕ0⟶(𝐴 ↑pm ω)) |
9 | 8 | frnd 5322 | . . . . . . 7 ⊢ (𝜑 → ran 𝐻 ⊆ (𝐴 ↑pm ω)) |
10 | 9 | sselda 3124 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐻) → 𝑠 ∈ (𝐴 ↑pm ω)) |
11 | pmfun 6602 | . . . . . 6 ⊢ (𝑠 ∈ (𝐴 ↑pm ω) → Fun 𝑠) | |
12 | 10, 11 | syl 14 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐻) → Fun 𝑠) |
13 | 1 | ad2antrr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
14 | 2 | ad2antrr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝐹:ω–onto→𝐴) |
15 | 3 | ad2antrr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
16 | simplr 520 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝑠 ∈ ran 𝐻) | |
17 | simpr 109 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝑡 ∈ ran 𝐻) | |
18 | 13, 14, 15, 4, 5, 6, 7, 16, 17 | ennnfonelemrnh 12096 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → (𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠)) |
19 | 18 | ralrimiva 2527 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐻) → ∀𝑡 ∈ ran 𝐻(𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠)) |
20 | 12, 19 | jca 304 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐻) → (Fun 𝑠 ∧ ∀𝑡 ∈ ran 𝐻(𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠))) |
21 | 20 | ralrimiva 2527 | . . 3 ⊢ (𝜑 → ∀𝑠 ∈ ran 𝐻(Fun 𝑠 ∧ ∀𝑡 ∈ ran 𝐻(𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠))) |
22 | fununi 5231 | . . 3 ⊢ (∀𝑠 ∈ ran 𝐻(Fun 𝑠 ∧ ∀𝑡 ∈ ran 𝐻(𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠)) → Fun ∪ ran 𝐻) | |
23 | 21, 22 | syl 14 | . 2 ⊢ (𝜑 → Fun ∪ ran 𝐻) |
24 | ennnfone.l | . . . 4 ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) | |
25 | 8 | ffnd 5313 | . . . . 5 ⊢ (𝜑 → 𝐻 Fn ℕ0) |
26 | fniunfv 5703 | . . . . 5 ⊢ (𝐻 Fn ℕ0 → ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) = ∪ ran 𝐻) | |
27 | 25, 26 | syl 14 | . . . 4 ⊢ (𝜑 → ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) = ∪ ran 𝐻) |
28 | 24, 27 | syl5eq 2199 | . . 3 ⊢ (𝜑 → 𝐿 = ∪ ran 𝐻) |
29 | 28 | funeqd 5185 | . 2 ⊢ (𝜑 → (Fun 𝐿 ↔ Fun ∪ ran 𝐻)) |
30 | 23, 29 | mpbird 166 | 1 ⊢ (𝜑 → Fun 𝐿) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 698 DECID wdc 820 = wceq 1332 ∈ wcel 2125 ≠ wne 2324 ∀wral 2432 ∃wrex 2433 ∪ cun 3096 ⊆ wss 3098 ∅c0 3390 ifcif 3501 {csn 3556 〈cop 3559 ∪ cuni 3768 ∪ ciun 3845 ↦ cmpt 4021 suc csuc 4320 ωcom 4543 ◡ccnv 4578 dom cdm 4579 ran crn 4580 “ cima 4582 Fun wfun 5157 Fn wfn 5158 –onto→wfo 5161 ‘cfv 5163 (class class class)co 5814 ∈ cmpo 5816 freccfrec 6327 ↑pm cpm 6583 0cc0 7711 1c1 7712 + caddc 7714 − cmin 8025 ℕ0cn0 9069 ℤcz 9146 seqcseq 10322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-ltadd 7827 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-frec 6328 df-pm 6585 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-inn 8813 df-n0 9070 df-z 9147 df-uz 9419 df-seqfrec 10323 |
This theorem is referenced by: ennnfonelemf1 12098 |
Copyright terms: Public domain | W3C validator |