HomeHome Intuitionistic Logic Explorer
Theorem List (p. 56 of 133)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5501-5600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfvmptdf 5501* Alternate deduction version of fvmpt 5491, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
(𝜑𝐴𝐷)    &   ((𝜑𝑥 = 𝐴) → 𝐵𝑉)    &   ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = 𝐵𝜓))    &   𝑥𝐹    &   𝑥𝜓       (𝜑 → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
 
Theoremfvmptdv 5502* Alternate deduction version of fvmpt 5491, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
(𝜑𝐴𝐷)    &   ((𝜑𝑥 = 𝐴) → 𝐵𝑉)    &   ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = 𝐵𝜓))       (𝜑 → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
 
Theoremfvmptdv2 5503* Alternate deduction version of fvmpt 5491, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
(𝜑𝐴𝐷)    &   ((𝜑𝑥 = 𝐴) → 𝐵𝑉)    &   ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)       (𝜑 → (𝐹 = (𝑥𝐷𝐵) → (𝐹𝐴) = 𝐶))
 
Theoremmpteqb 5504* Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5511. (Contributed by Mario Carneiro, 14-Nov-2014.)
(∀𝑥𝐴 𝐵𝑉 → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ↔ ∀𝑥𝐴 𝐵 = 𝐶))
 
Theoremfvmptt 5505* Closed theorem form of fvmpt 5491. (Contributed by Scott Fenton, 21-Feb-2013.) (Revised by Mario Carneiro, 11-Sep-2015.)
((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → (𝐹𝐴) = 𝐶)
 
Theoremfvmptf 5506* Value of a function given by an ordered-pair class abstraction. This version of fvmptg 5490 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴    &   𝑥𝐶    &   (𝑥 = 𝐴𝐵 = 𝐶)    &   𝐹 = (𝑥𝐷𝐵)       ((𝐴𝐷𝐶𝑉) → (𝐹𝐴) = 𝐶)
 
Theoremfvmptd3 5507* Deduction version of fvmpt 5491. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝐹 = (𝑥𝐷𝐵)    &   (𝑥 = 𝐴𝐵 = 𝐶)    &   (𝜑𝐴𝐷)    &   (𝜑𝐶𝑉)       (𝜑 → (𝐹𝐴) = 𝐶)
 
Theoremelfvmptrab1 5508* Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})    &   (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)       (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
 
Theoremelfvmptrab 5509* Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
𝐹 = (𝑥𝑉 ↦ {𝑦𝑀𝜑})    &   (𝑋𝑉𝑀 ∈ V)       (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑀))
 
Theoremfvopab6 5510* Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐵)}    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐴𝐵 = 𝐶)       ((𝐴𝐷𝐶𝑅𝜓) → (𝐹𝐴) = 𝐶)
 
Theoremeqfnfv 5511* Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
 
Theoremeqfnfv2 5512* Equality of functions is determined by their values. Exercise 4 of [TakeutiZaring] p. 28. (Contributed by NM, 3-Aug-1994.) (Revised by Mario Carneiro, 31-Aug-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
 
Theoremeqfnfv3 5513* Derive equality of functions from equality of their values. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥)))))
 
Theoremeqfnfvd 5514* Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐺 Fn 𝐴)    &   ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))       (𝜑𝐹 = 𝐺)
 
Theoremeqfnfv2f 5515* Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 5511 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.)
𝑥𝐹    &   𝑥𝐺       ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
 
Theoremeqfunfv 5516* Equality of functions is determined by their values. (Contributed by Scott Fenton, 19-Jun-2011.)
((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹𝑥) = (𝐺𝑥))))
 
Theoremfvreseq 5517* Equality of restricted functions is determined by their values. (Contributed by NM, 3-Aug-1994.)
(((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐵𝐴) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
 
Theoremfndmdif 5518* Two ways to express the locus of differences between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
 
Theoremfndmdifcom 5519 The difference set between two functions is commutative. (Contributed by Stefan O'Rear, 17-Jan-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = dom (𝐺𝐹))
 
Theoremfndmin 5520* Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)})
 
Theoremfneqeql 5521 Two functions are equal iff their equalizer is the whole domain. (Contributed by Stefan O'Rear, 7-Mar-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ dom (𝐹𝐺) = 𝐴))
 
Theoremfneqeql2 5522 Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺𝐴 ⊆ dom (𝐹𝐺)))
 
Theoremfnreseql 5523 Two functions are equal on a subset iff their equalizer contains that subset. (Contributed by Stefan O'Rear, 7-Mar-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = (𝐺𝑋) ↔ 𝑋 ⊆ dom (𝐹𝐺)))
 
Theoremchfnrn 5524* The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.)
((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥) → ran 𝐹 𝐴)
 
Theoremfunfvop 5525 Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 14-Oct-1996.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
 
Theoremfunfvbrb 5526 Two ways to say that 𝐴 is in the domain of 𝐹. (Contributed by Mario Carneiro, 1-May-2014.)
(Fun 𝐹 → (𝐴 ∈ dom 𝐹𝐴𝐹(𝐹𝐴)))
 
Theoremfvimacnvi 5527 A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.)
((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹𝐴) ∈ 𝐵)
 
Theoremfvimacnv 5528 The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 5196 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
 
Theoremfunimass3 5529 A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 5528 would be the special case of 𝐴 being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
 
Theoremfunimass5 5530* A subclass of a preimage in terms of function values. (Contributed by NM, 15-May-2007.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐴 ⊆ (𝐹𝐵) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
 
Theoremfunconstss 5531* Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
 
Theoremelpreima 5532 Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐹 Fn 𝐴 → (𝐵 ∈ (𝐹𝐶) ↔ (𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶)))
 
Theoremfniniseg 5533 Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
(𝐹 Fn 𝐴 → (𝐶 ∈ (𝐹 “ {𝐵}) ↔ (𝐶𝐴 ∧ (𝐹𝐶) = 𝐵)))
 
Theoremfncnvima2 5534* Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
(𝐹 Fn 𝐴 → (𝐹𝐵) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ 𝐵})
 
Theoremfniniseg2 5535* Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
(𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝐵})
 
Theoremfnniniseg2 5536* Support sets of functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
(𝐹 Fn 𝐴 → (𝐹 “ (V ∖ {𝐵})) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝐵})
 
Theoremrexsupp 5537* Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.)
(𝐹 Fn 𝐴 → (∃𝑥 ∈ (𝐹 “ (V ∖ {𝑍}))𝜑 ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 𝑍𝜑)))
 
Theoremunpreima 5538 Preimage of a union. (Contributed by Jeff Madsen, 2-Sep-2009.)
(Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∪ (𝐹𝐵)))
 
Theoreminpreima 5539 Preimage of an intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jun-2016.)
(Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
 
Theoremdifpreima 5540 Preimage of a difference. (Contributed by Mario Carneiro, 14-Jun-2016.)
(Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
 
Theoremrespreima 5541 The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.)
(Fun 𝐹 → ((𝐹𝐵) “ 𝐴) = ((𝐹𝐴) ∩ 𝐵))
 
Theoremfimacnv 5542 The preimage of the codomain of a mapping is the mapping's domain. (Contributed by FL, 25-Jan-2007.)
(𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)
 
Theoremfnopfv 5543 Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 30-Sep-2004.)
((𝐹 Fn 𝐴𝐵𝐴) → ⟨𝐵, (𝐹𝐵)⟩ ∈ 𝐹)
 
Theoremfvelrn 5544 A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
 
Theoremfnfvelrn 5545 A function's value belongs to its range. (Contributed by NM, 15-Oct-1996.)
((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) ∈ ran 𝐹)
 
Theoremffvelrn 5546 A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.)
((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐵)
 
Theoremffvelrni 5547 A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.)
𝐹:𝐴𝐵       (𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)
 
Theoremffvelrnda 5548 A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
(𝜑𝐹:𝐴𝐵)       ((𝜑𝐶𝐴) → (𝐹𝐶) ∈ 𝐵)
 
Theoremffvelrnd 5549 A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐶𝐴)       (𝜑 → (𝐹𝐶) ∈ 𝐵)
 
Theoremrexrn 5550* Restricted existential quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
(𝑥 = (𝐹𝑦) → (𝜑𝜓))       (𝐹 Fn 𝐴 → (∃𝑥 ∈ ran 𝐹𝜑 ↔ ∃𝑦𝐴 𝜓))
 
Theoremralrn 5551* Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
(𝑥 = (𝐹𝑦) → (𝜑𝜓))       (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦𝐴 𝜓))
 
Theoremelrnrexdm 5552* For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
(Fun 𝐹 → (𝑌 ∈ ran 𝐹 → ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹𝑥)))
 
Theoremelrnrexdmb 5553* For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 17-Dec-2017.)
(Fun 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹𝑥)))
 
Theoremeldmrexrn 5554* For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
(Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
 
Theoremralrnmpt 5555* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
𝐹 = (𝑥𝐴𝐵)    &   (𝑦 = 𝐵 → (𝜓𝜒))       (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜒))
 
Theoremrexrnmpt 5556* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
𝐹 = (𝑥𝐴𝐵)    &   (𝑦 = 𝐵 → (𝜓𝜒))       (∀𝑥𝐴 𝐵𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥𝐴 𝜒))
 
Theoremdff2 5557 Alternate definition of a mapping. (Contributed by NM, 14-Nov-2007.)
(𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴𝐹 ⊆ (𝐴 × 𝐵)))
 
Theoremdff3im 5558* Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.)
(𝐹:𝐴𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
 
Theoremdff4im 5559* Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.)
(𝐹:𝐴𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝐹𝑦))
 
Theoremdffo3 5560* An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006.)
(𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
 
Theoremdffo4 5561* Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
(𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
 
Theoremdffo5 5562* Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
(𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦))
 
Theoremfmpt 5563* Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴𝐶)       (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
 
Theoremf1ompt 5564* Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.)
𝐹 = (𝑥𝐴𝐶)       (𝐹:𝐴1-1-onto𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶))
 
Theoremfmpti 5565* Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
𝐹 = (𝑥𝐴𝐶)    &   (𝑥𝐴𝐶𝐵)       𝐹:𝐴𝐵
 
Theoremfvmptelrn 5566* The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑 → (𝑥𝐴𝐵):𝐴𝐶)       ((𝜑𝑥𝐴) → 𝐵𝐶)
 
Theoremfmptd 5567* Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.)
((𝜑𝑥𝐴) → 𝐵𝐶)    &   𝐹 = (𝑥𝐴𝐵)       (𝜑𝐹:𝐴𝐶)
 
Theoremfmpttd 5568* Version of fmptd 5567 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.)
((𝜑𝑥𝐴) → 𝐵𝐶)       (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
 
Theoremfmpt3d 5569* Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.)
(𝜑𝐹 = (𝑥𝐴𝐵))    &   ((𝜑𝑥𝐴) → 𝐵𝐶)       (𝜑𝐹:𝐴𝐶)
 
Theoremfmptdf 5570* A version of fmptd 5567 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵𝐶)    &   𝐹 = (𝑥𝐴𝐵)       (𝜑𝐹:𝐴𝐶)
 
Theoremffnfv 5571* A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.)
(𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
 
Theoremffnfvf 5572 A function maps to a class to which all values belong. This version of ffnfv 5571 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝐹       (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
 
Theoremfnfvrnss 5573* An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.)
((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → ran 𝐹𝐵)
 
Theoremrnmptss 5574* The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.)
𝐹 = (𝑥𝐴𝐵)       (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
 
Theoremfmpt2d 5575* Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑𝐹 = (𝑥𝐴𝐵))    &   ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐶)       (𝜑𝐹:𝐴𝐶)
 
Theoremffvresb 5576* A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.)
(Fun 𝐹 → ((𝐹𝐴):𝐴𝐵 ↔ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
 
Theoremresflem 5577* A lemma to bound the range of a restriction. The conclusion would also hold with (𝑋𝑌) in place of 𝑌 (provided 𝑥 does not occur in 𝑋). If that stronger result is needed, it is however simpler to use the instance of resflem 5577 where (𝑋𝑌) is substituted for 𝑌 (in both the conclusion and the third hypothesis). (Contributed by BJ, 4-Jul-2022.)
(𝜑𝐹:𝑉𝑋)    &   (𝜑𝐴𝑉)    &   ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝑌)       (𝜑 → (𝐹𝐴):𝐴𝑌)
 
Theoremf1oresrab 5578* Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018.)
𝐹 = (𝑥𝐴𝐶)    &   (𝜑𝐹:𝐴1-1-onto𝐵)    &   ((𝜑𝑥𝐴𝑦 = 𝐶) → (𝜒𝜓))       (𝜑 → (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒})
 
Theoremfmptco 5579* Composition of two functions expressed as ordered-pair class abstractions. If 𝐹 has the equation ( x + 2 ) and 𝐺 the equation ( 3 * z ) then (𝐺𝐹) has the equation ( 3 * ( x + 2 ) ) . (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.)
((𝜑𝑥𝐴) → 𝑅𝐵)    &   (𝜑𝐹 = (𝑥𝐴𝑅))    &   (𝜑𝐺 = (𝑦𝐵𝑆))    &   (𝑦 = 𝑅𝑆 = 𝑇)       (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
 
Theoremfmptcof 5580* Version of fmptco 5579 where 𝜑 needn't be distinct from 𝑥. (Contributed by NM, 27-Dec-2014.)
(𝜑 → ∀𝑥𝐴 𝑅𝐵)    &   (𝜑𝐹 = (𝑥𝐴𝑅))    &   (𝜑𝐺 = (𝑦𝐵𝑆))    &   (𝑦 = 𝑅𝑆 = 𝑇)       (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
 
Theoremfmptcos 5581* Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝜑 → ∀𝑥𝐴 𝑅𝐵)    &   (𝜑𝐹 = (𝑥𝐴𝑅))    &   (𝜑𝐺 = (𝑦𝐵𝑆))       (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑅 / 𝑦𝑆))
 
Theoremcofmpt 5582* Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017.)
(𝜑𝐹:𝐶𝐷)    &   ((𝜑𝑥𝐴) → 𝐵𝐶)       (𝜑 → (𝐹 ∘ (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ (𝐹𝐵)))
 
Theoremfcompt 5583* Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝐴𝐵) = (𝑥𝐶 ↦ (𝐴‘(𝐵𝑥))))
 
Theoremfcoconst 5584 Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015.)
((𝐹 Fn 𝑋𝑌𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹𝑌)}))
 
Theoremfsn 5585 A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩})
 
Theoremfsng 5586 A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012.)
((𝐴𝐶𝐵𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩}))
 
Theoremfsn2 5587 A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.)
𝐴 ∈ V       (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
 
Theoremxpsng 5588 The cross product of two singletons. (Contributed by Mario Carneiro, 30-Apr-2015.)
((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
 
Theoremxpsn 5589 The cross product of two singletons. (Contributed by NM, 4-Nov-2006.)
𝐴 ∈ V    &   𝐵 ∈ V       ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩}
 
Theoremdfmpt 5590 Alternate definition for the maps-to notation df-mpt 3986 (although it requires that 𝐵 be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.)
𝐵 ∈ V       (𝑥𝐴𝐵) = 𝑥𝐴 {⟨𝑥, 𝐵⟩}
 
Theoremfnasrn 5591 A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
𝐵 ∈ V       (𝑥𝐴𝐵) = ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩)
 
Theoremdfmptg 5592 Alternate definition for the maps-to notation df-mpt 3986 (which requires that 𝐵 be a set). (Contributed by Jim Kingdon, 9-Jan-2019.)
(∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) = 𝑥𝐴 {⟨𝑥, 𝐵⟩})
 
Theoremfnasrng 5593 A function expressed as the range of another function. (Contributed by Jim Kingdon, 9-Jan-2019.)
(∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) = ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩))
 
Theoremressnop0 5594 If 𝐴 is not in 𝐶, then the restriction of a singleton of 𝐴, 𝐵 to 𝐶 is null. (Contributed by Scott Fenton, 15-Apr-2011.)
𝐴𝐶 → ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅)
 
Theoremfpr 5595 A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V       (𝐴𝐵 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})
 
Theoremfprg 5596 A function with a domain of two elements. (Contributed by FL, 2-Feb-2014.)
(((𝐴𝐸𝐵𝐹) ∧ (𝐶𝐺𝐷𝐻) ∧ 𝐴𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})
 
Theoremftpg 5597 A function with a domain of three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
(((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶})
 
Theoremftp 5598 A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by Alexander van der Vekens, 23-Jan-2018.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝑋 ∈ V    &   𝑌 ∈ V    &   𝑍 ∈ V    &   𝐴𝐵    &   𝐴𝐶    &   𝐵𝐶       {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍}
 
Theoremfnressn 5599 A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
((𝐹 Fn 𝐴𝐵𝐴) → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩})
 
Theoremfressnfv 5600 The value of a function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹𝐵) ∈ 𝐶))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13239
  Copyright terms: Public domain < Previous  Next >