HomeHome Intuitionistic Logic Explorer
Theorem List (p. 56 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5501-5600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem2fveq3 5501 Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.)
(𝐴 = 𝐵 → (𝐹‘(𝐺𝐴)) = (𝐹‘(𝐺𝐵)))
 
Theoremfveq12i 5502 Equality deduction for function value. (Contributed by FL, 27-Jun-2014.)
𝐹 = 𝐺    &   𝐴 = 𝐵       (𝐹𝐴) = (𝐺𝐵)
 
Theoremfveq12d 5503 Equality deduction for function value. (Contributed by FL, 22-Dec-2008.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐹𝐴) = (𝐺𝐵))
 
Theoremfveqeq2d 5504 Equality deduction for function value. (Contributed by BJ, 30-Aug-2022.)
(𝜑𝐴 = 𝐵)       (𝜑 → ((𝐹𝐴) = 𝐶 ↔ (𝐹𝐵) = 𝐶))
 
Theoremfveqeq2 5505 Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.)
(𝐴 = 𝐵 → ((𝐹𝐴) = 𝐶 ↔ (𝐹𝐵) = 𝐶))
 
Theoremnffv 5506 Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐹    &   𝑥𝐴       𝑥(𝐹𝐴)
 
Theoremnffvmpt1 5507* Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.)
𝑥((𝑥𝐴𝐵)‘𝐶)
 
Theoremnffvd 5508 Deduction version of bound-variable hypothesis builder nffv 5506. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
(𝜑𝑥𝐹)    &   (𝜑𝑥𝐴)       (𝜑𝑥(𝐹𝐴))
 
Theoremfunfveu 5509* A function has one value given an argument in its domain. (Contributed by Jim Kingdon, 29-Dec-2018.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦)
 
Theoremfvss 5510* The value of a function is a subset of 𝐵 if every element that could be a candidate for the value is a subset of 𝐵. (Contributed by Mario Carneiro, 24-May-2019.)
(∀𝑥(𝐴𝐹𝑥𝑥𝐵) → (𝐹𝐴) ⊆ 𝐵)
 
Theoremfvssunirng 5511 The result of a function value is always a subset of the union of the range, if the input is a set. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.)
(𝐴 ∈ V → (𝐹𝐴) ⊆ ran 𝐹)
 
Theoremrelfvssunirn 5512 The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.)
(Rel 𝐹 → (𝐹𝐴) ⊆ ran 𝐹)
 
Theoremfunfvex 5513 The value of a function exists. A special case of Corollary 6.13 of [TakeutiZaring] p. 27. (Contributed by Jim Kingdon, 29-Dec-2018.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ V)
 
Theoremrelrnfvex 5514 If a function has a set range, then the function value exists unconditional on the domain. (Contributed by Mario Carneiro, 24-May-2019.)
((Rel 𝐹 ∧ ran 𝐹 ∈ V) → (𝐹𝐴) ∈ V)
 
Theoremfvexg 5515 Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.)
((𝐹𝑉𝐴𝑊) → (𝐹𝐴) ∈ V)
 
Theoremfvex 5516 Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.)
𝐹𝑉    &   𝐴𝑊       (𝐹𝐴) ∈ V
 
Theoremsefvex 5517 If a function is set-like, then the function value exists if the input does. (Contributed by Mario Carneiro, 24-May-2019.)
((𝐹 Se V ∧ 𝐴 ∈ V) → (𝐹𝐴) ∈ V)
 
Theoremfvifdc 5518 Move a conditional outside of a function. (Contributed by Jim Kingdon, 1-Jan-2022.)
(DECID 𝜑 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹𝐴), (𝐹𝐵)))
 
Theoremfv3 5519* Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝐹𝐴) = {𝑥 ∣ (∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)}
 
Theoremfvres 5520 The value of a restricted function. (Contributed by NM, 2-Aug-1994.)
(𝐴𝐵 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
 
Theoremfvresd 5521 The value of a restricted function, deduction version of fvres 5520. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝐴𝐵)       (𝜑 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
 
Theoremfunssfv 5522 The value of a member of the domain of a subclass of a function. (Contributed by NM, 15-Aug-1994.)
((Fun 𝐹𝐺𝐹𝐴 ∈ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
 
Theoremtz6.12-1 5523* Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.)
((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
 
Theoremtz6.12 5524* Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 10-Jul-1994.)
((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)
 
Theoremtz6.12f 5525* Function value, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 30-Aug-1999.)
𝑦𝐹       ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)
 
Theoremtz6.12c 5526* Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.)
(∃!𝑦 𝐴𝐹𝑦 → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
 
Theoremndmfvg 5527 The value of a class outside its domain is the empty set. (Contributed by Jim Kingdon, 15-Jan-2019.)
((𝐴 ∈ V ∧ ¬ 𝐴 ∈ dom 𝐹) → (𝐹𝐴) = ∅)
 
Theoremrelelfvdm 5528 If a function value has a member, the argument belongs to the domain. (Contributed by Jim Kingdon, 22-Jan-2019.)
((Rel 𝐹𝐴 ∈ (𝐹𝐵)) → 𝐵 ∈ dom 𝐹)
 
Theoremnfvres 5529 The value of a non-member of a restriction is the empty set. (Contributed by NM, 13-Nov-1995.)
𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)
 
Theoremnfunsn 5530 If the restriction of a class to a singleton is not a function, its value is the empty set. (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(¬ Fun (𝐹 ↾ {𝐴}) → (𝐹𝐴) = ∅)
 
Theorem0fv 5531 Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.)
(∅‘𝐴) = ∅
 
Theoremcsbfv12g 5532 Move class substitution in and out of a function value. (Contributed by NM, 11-Nov-2005.)
(𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
 
Theoremcsbfv2g 5533* Move class substitution in and out of a function value. (Contributed by NM, 10-Nov-2005.)
(𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐹𝐴 / 𝑥𝐵))
 
Theoremcsbfvg 5534* Substitution for a function value. (Contributed by NM, 1-Jan-2006.)
(𝐴𝐶𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴))
 
Theoremfunbrfv 5535 The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
(Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹𝐴) = 𝐵))
 
Theoremfunopfv 5536 The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.)
(Fun 𝐹 → (⟨𝐴, 𝐵⟩ ∈ 𝐹 → (𝐹𝐴) = 𝐵))
 
Theoremfnbrfvb 5537 Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))
 
Theoremfnopfvb 5538 Equivalence of function value and ordered pair membership. (Contributed by NM, 7-Nov-1995.)
((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐹))
 
Theoremfunbrfvb 5539 Equivalence of function value and binary relation. (Contributed by NM, 26-Mar-2006.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))
 
Theoremfunopfvb 5540 Equivalence of function value and ordered pair membership. Theorem 4.3(ii) of [Monk1] p. 42. (Contributed by NM, 26-Jan-1997.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
 
Theoremfunbrfv2b 5541 Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014.)
(Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹𝐴) = 𝐵)))
 
Theoremdffn5im 5542* Representation of a function in terms of its values. The converse holds given the law of the excluded middle; as it is we have most of the converse via funmpt 5236 and dmmptss 5107. (Contributed by Jim Kingdon, 31-Dec-2018.)
(𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
 
Theoremfnrnfv 5543* The range of a function expressed as a collection of the function's values. (Contributed by NM, 20-Oct-2005.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
(𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
 
Theoremfvelrnb 5544* A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995.)
(𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
 
Theoremdfimafn 5545* Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦})
 
Theoremdfimafn2 5546* Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {(𝐹𝑥)})
 
Theoremfunimass4 5547* Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
 
Theoremfvelima 5548* Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ∃𝑥𝐵 (𝐹𝑥) = 𝐴)
 
Theoremfeqmptd 5549* Deduction form of dffn5im 5542. (Contributed by Mario Carneiro, 8-Jan-2015.)
(𝜑𝐹:𝐴𝐵)       (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
 
Theoremfeqresmpt 5550* Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐶𝐴)       (𝜑 → (𝐹𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
 
Theoremdffn5imf 5551* Representation of a function in terms of its values. (Contributed by Jim Kingdon, 31-Dec-2018.)
𝑥𝐹       (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
 
Theoremfvelimab 5552* Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.)
((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
 
Theoremfvi 5553 The value of the identity function. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐴𝑉 → ( I ‘𝐴) = 𝐴)
 
Theoremfniinfv 5554* The indexed intersection of a function's values is the intersection of its range. (Contributed by NM, 20-Oct-2005.)
(𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = ran 𝐹)
 
Theoremfnsnfv 5555 Singleton of function value. (Contributed by NM, 22-May-1998.)
((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))
 
Theoremfnimapr 5556 The image of a pair under a function. (Contributed by Jeff Madsen, 6-Jan-2011.)
((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝐹 “ {𝐵, 𝐶}) = {(𝐹𝐵), (𝐹𝐶)})
 
Theoremssimaex 5557* The existence of a subimage. (Contributed by NM, 8-Apr-2007.)
𝐴 ∈ V       ((Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
 
Theoremssimaexg 5558* The existence of a subimage. (Contributed by FL, 15-Apr-2007.)
((𝐴𝐶 ∧ Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
 
Theoremfunfvdm 5559 A simplified expression for the value of a function when we know it's a function. (Contributed by Jim Kingdon, 1-Jan-2019.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = (𝐹 “ {𝐴}))
 
Theoremfunfvdm2 5560* The value of a function. Definition of function value in [Enderton] p. 43. (Contributed by Jim Kingdon, 1-Jan-2019.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
 
Theoremfunfvdm2f 5561 The value of a function. Version of funfvdm2 5560 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 1-Jan-2019.)
𝑦𝐴    &   𝑦𝐹       ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
 
Theoremfvun1 5562 The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))
 
Theoremfvun2 5563 The value of a union when the argument is in the second domain. (Contributed by Scott Fenton, 29-Jun-2013.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)) → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))
 
Theoremdmfco 5564 Domains of a function composition. (Contributed by NM, 27-Jan-1997.)
((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺𝐴) ∈ dom 𝐹))
 
Theoremfvco2 5565 Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.)
((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
 
Theoremfvco 5566 Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.)
((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
 
Theoremfvco3 5567 Value of a function composition. (Contributed by NM, 3-Jan-2004.) (Revised by Mario Carneiro, 26-Dec-2014.)
((𝐺:𝐴𝐵𝐶𝐴) → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
 
Theoremfvco4 5568 Value of a composition. (Contributed by BJ, 7-Jul-2022.)
(((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → (𝐻𝑥) = (𝐹𝑢))
 
Theoremfvopab3g 5569* Value of a function given by ordered-pair class abstraction. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑥𝐶 → ∃!𝑦𝜑)    &   𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}       ((𝐴𝐶𝐵𝐷) → ((𝐹𝐴) = 𝐵𝜒))
 
Theoremfvopab3ig 5570* Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑥𝐶 → ∃*𝑦𝜑)    &   𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}       ((𝐴𝐶𝐵𝐷) → (𝜒 → (𝐹𝐴) = 𝐵))
 
Theoremfvmptss2 5571* A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2019.)
(𝑥 = 𝐷𝐵 = 𝐶)    &   𝐹 = (𝑥𝐴𝐵)       (𝐹𝐷) ⊆ 𝐶
 
Theoremfvmptg 5572* Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝑥 = 𝐴𝐵 = 𝐶)    &   𝐹 = (𝑥𝐷𝐵)       ((𝐴𝐷𝐶𝑅) → (𝐹𝐴) = 𝐶)
 
Theoremfvmpt 5573* Value of a function given in maps-to notation. (Contributed by NM, 17-Aug-2011.)
(𝑥 = 𝐴𝐵 = 𝐶)    &   𝐹 = (𝑥𝐷𝐵)    &   𝐶 ∈ V       (𝐴𝐷 → (𝐹𝐴) = 𝐶)
 
Theoremfvmpts 5574* Value of a function given in maps-to notation, using explicit class substitution. (Contributed by Scott Fenton, 17-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐶𝐵)       ((𝐴𝐶𝐴 / 𝑥𝐵𝑉) → (𝐹𝐴) = 𝐴 / 𝑥𝐵)
 
Theoremfvmpt3 5575* Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Stefan O'Rear, 30-Jan-2015.)
(𝑥 = 𝐴𝐵 = 𝐶)    &   𝐹 = (𝑥𝐷𝐵)    &   (𝑥𝐷𝐵𝑉)       (𝐴𝐷 → (𝐹𝐴) = 𝐶)
 
Theoremfvmpt3i 5576* Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.)
(𝑥 = 𝐴𝐵 = 𝐶)    &   𝐹 = (𝑥𝐷𝐵)    &   𝐵 ∈ V       (𝐴𝐷 → (𝐹𝐴) = 𝐶)
 
Theoremfvmptd 5577* Deduction version of fvmpt 5573. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝜑𝐹 = (𝑥𝐷𝐵))    &   ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)    &   (𝜑𝐴𝐷)    &   (𝜑𝐶𝑉)       (𝜑 → (𝐹𝐴) = 𝐶)
 
Theoremmptrcl 5578* Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.) (Revised by Jim Kingdon, 27-Mar-2023.)
𝐹 = (𝑥𝐴𝐵)       (𝐼 ∈ (𝐹𝑋) → 𝑋𝐴)
 
Theoremfvmpt2 5579* Value of a function given by the maps-to notation. (Contributed by FL, 21-Jun-2010.)
𝐹 = (𝑥𝐴𝐵)       ((𝑥𝐴𝐵𝐶) → (𝐹𝑥) = 𝐵)
 
Theoremfvmptssdm 5580* If all the values of the mapping are subsets of a class 𝐶, then so is any evaluation of the mapping at a value in the domain of the mapping. (Contributed by Jim Kingdon, 3-Jan-2018.)
𝐹 = (𝑥𝐴𝐵)       ((𝐷 ∈ dom 𝐹 ∧ ∀𝑥𝐴 𝐵𝐶) → (𝐹𝐷) ⊆ 𝐶)
 
Theoremmptfvex 5581* Sufficient condition for a maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
𝐹 = (𝑥𝐴𝐵)       ((∀𝑥 𝐵𝑉𝐶𝑊) → (𝐹𝐶) ∈ V)
 
Theoremfvmpt2d 5582* Deduction version of fvmpt2 5579. (Contributed by Thierry Arnoux, 8-Dec-2016.)
(𝜑𝐹 = (𝑥𝐴𝐵))    &   ((𝜑𝑥𝐴) → 𝐵𝑉)       ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
 
Theoremfvmptdf 5583* Alternate deduction version of fvmpt 5573, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
(𝜑𝐴𝐷)    &   ((𝜑𝑥 = 𝐴) → 𝐵𝑉)    &   ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = 𝐵𝜓))    &   𝑥𝐹    &   𝑥𝜓       (𝜑 → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
 
Theoremfvmptdv 5584* Alternate deduction version of fvmpt 5573, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
(𝜑𝐴𝐷)    &   ((𝜑𝑥 = 𝐴) → 𝐵𝑉)    &   ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = 𝐵𝜓))       (𝜑 → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
 
Theoremfvmptdv2 5585* Alternate deduction version of fvmpt 5573, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
(𝜑𝐴𝐷)    &   ((𝜑𝑥 = 𝐴) → 𝐵𝑉)    &   ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)       (𝜑 → (𝐹 = (𝑥𝐷𝐵) → (𝐹𝐴) = 𝐶))
 
Theoremmpteqb 5586* Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5593. (Contributed by Mario Carneiro, 14-Nov-2014.)
(∀𝑥𝐴 𝐵𝑉 → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ↔ ∀𝑥𝐴 𝐵 = 𝐶))
 
Theoremfvmptt 5587* Closed theorem form of fvmpt 5573. (Contributed by Scott Fenton, 21-Feb-2013.) (Revised by Mario Carneiro, 11-Sep-2015.)
((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → (𝐹𝐴) = 𝐶)
 
Theoremfvmptf 5588* Value of a function given by an ordered-pair class abstraction. This version of fvmptg 5572 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴    &   𝑥𝐶    &   (𝑥 = 𝐴𝐵 = 𝐶)    &   𝐹 = (𝑥𝐷𝐵)       ((𝐴𝐷𝐶𝑉) → (𝐹𝐴) = 𝐶)
 
Theoremfvmptd3 5589* Deduction version of fvmpt 5573. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝐹 = (𝑥𝐷𝐵)    &   (𝑥 = 𝐴𝐵 = 𝐶)    &   (𝜑𝐴𝐷)    &   (𝜑𝐶𝑉)       (𝜑 → (𝐹𝐴) = 𝐶)
 
Theoremelfvmptrab1 5590* Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})    &   (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)       (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
 
Theoremelfvmptrab 5591* Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
𝐹 = (𝑥𝑉 ↦ {𝑦𝑀𝜑})    &   (𝑋𝑉𝑀 ∈ V)       (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑀))
 
Theoremfvopab6 5592* Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐵)}    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐴𝐵 = 𝐶)       ((𝐴𝐷𝐶𝑅𝜓) → (𝐹𝐴) = 𝐶)
 
Theoremeqfnfv 5593* Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
 
Theoremeqfnfv2 5594* Equality of functions is determined by their values. Exercise 4 of [TakeutiZaring] p. 28. (Contributed by NM, 3-Aug-1994.) (Revised by Mario Carneiro, 31-Aug-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
 
Theoremeqfnfv3 5595* Derive equality of functions from equality of their values. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥)))))
 
Theoremeqfnfvd 5596* Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐺 Fn 𝐴)    &   ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))       (𝜑𝐹 = 𝐺)
 
Theoremeqfnfv2f 5597* Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 5593 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.)
𝑥𝐹    &   𝑥𝐺       ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
 
Theoremeqfunfv 5598* Equality of functions is determined by their values. (Contributed by Scott Fenton, 19-Jun-2011.)
((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹𝑥) = (𝐺𝑥))))
 
Theoremfvreseq 5599* Equality of restricted functions is determined by their values. (Contributed by NM, 3-Aug-1994.)
(((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐵𝐴) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
 
Theoremfnmptfvd 5600* A function with a given domain is a mapping defined by its function values. (Contributed by AV, 1-Mar-2019.)
(𝜑𝑀 Fn 𝐴)    &   (𝑖 = 𝑎𝐷 = 𝐶)    &   ((𝜑𝑖𝐴) → 𝐷𝑈)    &   ((𝜑𝑎𝐴) → 𝐶𝑉)       (𝜑 → (𝑀 = (𝑎𝐴𝐶) ↔ ∀𝑖𝐴 (𝑀𝑖) = 𝐷))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >