| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffv3g | GIF version | ||
| Description: A definition of function value in terms of iota. (Contributed by Jim Kingdon, 29-Dec-2018.) |
| Ref | Expression |
|---|---|
| dffv3g | ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 5276 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 2 | vex 2774 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | elimasng 5047 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 〈𝐴, 𝑥〉 ∈ 𝐹)) | |
| 4 | df-br 4044 | . . . . 5 ⊢ (𝐴𝐹𝑥 ↔ 〈𝐴, 𝑥〉 ∈ 𝐹) | |
| 5 | 3, 4 | bitr4di 198 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
| 6 | 2, 5 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
| 7 | 6 | iotabidv 5251 | . 2 ⊢ (𝐴 ∈ 𝑉 → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝐴𝐹𝑥)) |
| 8 | 1, 7 | eqtr4id 2256 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 Vcvv 2771 {csn 3632 〈cop 3635 class class class wbr 4043 “ cima 4676 ℩cio 5227 ‘cfv 5268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4679 df-cnv 4681 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fv 5276 |
| This theorem is referenced by: dffv4g 5567 fvco2 5642 shftval 11055 |
| Copyright terms: Public domain | W3C validator |