![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dffv3g | GIF version |
Description: A definition of function value in terms of iota. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
dffv3g | ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2636 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | elimasng 4833 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 〈𝐴, 𝑥〉 ∈ 𝐹)) | |
3 | df-br 3868 | . . . . 5 ⊢ (𝐴𝐹𝑥 ↔ 〈𝐴, 𝑥〉 ∈ 𝐹) | |
4 | 2, 3 | syl6bbr 197 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
5 | 1, 4 | mpan2 417 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
6 | 5 | iotabidv 5035 | . 2 ⊢ (𝐴 ∈ 𝑉 → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝐴𝐹𝑥)) |
7 | df-fv 5057 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
8 | 6, 7 | syl6reqr 2146 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1296 ∈ wcel 1445 Vcvv 2633 {csn 3466 〈cop 3469 class class class wbr 3867 “ cima 4470 ℩cio 5012 ‘cfv 5049 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-sbc 2855 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-xp 4473 df-cnv 4475 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fv 5057 |
This theorem is referenced by: dffv4g 5337 fvco2 5408 shftval 10374 |
Copyright terms: Public domain | W3C validator |