Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dffv3g | GIF version |
Description: A definition of function value in terms of iota. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
dffv3g | ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5206 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
2 | vex 2733 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | elimasng 4979 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 〈𝐴, 𝑥〉 ∈ 𝐹)) | |
4 | df-br 3990 | . . . . 5 ⊢ (𝐴𝐹𝑥 ↔ 〈𝐴, 𝑥〉 ∈ 𝐹) | |
5 | 3, 4 | bitr4di 197 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
6 | 2, 5 | mpan2 423 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
7 | 6 | iotabidv 5181 | . 2 ⊢ (𝐴 ∈ 𝑉 → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝐴𝐹𝑥)) |
8 | 1, 7 | eqtr4id 2222 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 Vcvv 2730 {csn 3583 〈cop 3586 class class class wbr 3989 “ cima 4614 ℩cio 5158 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fv 5206 |
This theorem is referenced by: dffv4g 5493 fvco2 5565 shftval 10789 |
Copyright terms: Public domain | W3C validator |