ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffv3g GIF version

Theorem dffv3g 5554
Description: A definition of function value in terms of iota. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
dffv3g (𝐴𝑉 → (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝑉

Proof of Theorem dffv3g
StepHypRef Expression
1 df-fv 5266 . 2 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
2 vex 2766 . . . 4 𝑥 ∈ V
3 elimasng 5037 . . . . 5 ((𝐴𝑉𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹))
4 df-br 4034 . . . . 5 (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)
53, 4bitr4di 198 . . . 4 ((𝐴𝑉𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥))
62, 5mpan2 425 . . 3 (𝐴𝑉 → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥))
76iotabidv 5241 . 2 (𝐴𝑉 → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝐴𝐹𝑥))
81, 7eqtr4id 2248 1 (𝐴𝑉 → (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  {csn 3622  cop 3625   class class class wbr 4033  cima 4666  cio 5217  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fv 5266
This theorem is referenced by:  dffv4g  5555  fvco2  5630  shftval  10990
  Copyright terms: Public domain W3C validator