ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffv3g GIF version

Theorem dffv3g 5585
Description: A definition of function value in terms of iota. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
dffv3g (𝐴𝑉 → (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝑉

Proof of Theorem dffv3g
StepHypRef Expression
1 df-fv 5288 . 2 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
2 vex 2776 . . . 4 𝑥 ∈ V
3 elimasng 5059 . . . . 5 ((𝐴𝑉𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹))
4 df-br 4052 . . . . 5 (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)
53, 4bitr4di 198 . . . 4 ((𝐴𝑉𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥))
62, 5mpan2 425 . . 3 (𝐴𝑉 → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥))
76iotabidv 5263 . 2 (𝐴𝑉 → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝐴𝐹𝑥))
81, 7eqtr4id 2258 1 (𝐴𝑉 → (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  Vcvv 2773  {csn 3638  cop 3641   class class class wbr 4051  cima 4686  cio 5239  cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-xp 4689  df-cnv 4691  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fv 5288
This theorem is referenced by:  dffv4g  5586  fvco2  5661  shftval  11211
  Copyright terms: Public domain W3C validator