ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvprc GIF version

Theorem fvprc 5312
Description: A function's value at a proper class is the empty set. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
fvprc 𝐴 ∈ V → (𝐹𝐴) = ∅)

Proof of Theorem fvprc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 brprcneu 5311 . 2 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥)
2 tz6.12-2 5309 . 2 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
31, 2syl 14 1 𝐴 ∈ V → (𝐹𝐴) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1290  wcel 1439  ∃!weu 1949  Vcvv 2620  c0 3287   class class class wbr 3851  cfv 5028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-setind 4366
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-v 2622  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-iota 4993  df-fv 5036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator