ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvprc GIF version

Theorem fvprc 5583
Description: A function's value at a proper class is the empty set. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
fvprc 𝐴 ∈ V → (𝐹𝐴) = ∅)

Proof of Theorem fvprc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 brprcneu 5582 . 2 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥)
2 tz6.12-2 5580 . 2 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
31, 2syl 14 1 𝐴 ∈ V → (𝐹𝐴) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1373  ∃!weu 2055  wcel 2177  Vcvv 2773  c0 3464   class class class wbr 4051  cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-iota 5241  df-fv 5288
This theorem is referenced by:  fv2prc  5626  s1prc  11100  vtxvalprc  15727  iedgvalprc  15728
  Copyright terms: Public domain W3C validator