| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbothdc | GIF version | ||
| Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by Jim Kingdon, 8-Aug-2021.) |
| Ref | Expression |
|---|---|
| ifbothdc.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
| ifbothdc.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| ifbothdc | ⊢ ((𝜓 ∧ 𝜒 ∧ DECID 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 3607 | . . . . . 6 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | eqcomd 2235 | . . . . 5 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 3 | ifbothdc.1 | . . . . 5 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 5 | 4 | biimpcd 159 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜃)) |
| 6 | 5 | 3ad2ant1 1042 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ DECID 𝜑) → (𝜑 → 𝜃)) |
| 7 | iffalse 3610 | . . . . . 6 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 8 | 7 | eqcomd 2235 | . . . . 5 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
| 9 | ifbothdc.2 | . . . . 5 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
| 10 | 8, 9 | syl 14 | . . . 4 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜃)) |
| 11 | 10 | biimpcd 159 | . . 3 ⊢ (𝜒 → (¬ 𝜑 → 𝜃)) |
| 12 | 11 | 3ad2ant2 1043 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ DECID 𝜑) → (¬ 𝜑 → 𝜃)) |
| 13 | exmiddc 841 | . . 3 ⊢ (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑)) | |
| 14 | 13 | 3ad2ant3 1044 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ DECID 𝜑) → (𝜑 ∨ ¬ 𝜑)) |
| 15 | 6, 12, 14 | mpjaod 723 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ DECID 𝜑) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 713 DECID wdc 839 ∧ w3a 1002 = wceq 1395 ifcif 3602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-if 3603 |
| This theorem is referenced by: isumlessdc 12015 pcmptdvds 12876 |
| Copyright terms: Public domain | W3C validator |