![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifbothdc | GIF version |
Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by Jim Kingdon, 8-Aug-2021.) |
Ref | Expression |
---|---|
ifbothdc.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
ifbothdc.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
ifbothdc | ⊢ ((𝜓 ∧ 𝜒 ∧ DECID 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 3402 | . . . . . 6 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | eqcomd 2094 | . . . . 5 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
3 | ifbothdc.1 | . . . . 5 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
5 | 4 | biimpcd 158 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜃)) |
6 | 5 | 3ad2ant1 965 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ DECID 𝜑) → (𝜑 → 𝜃)) |
7 | iffalse 3405 | . . . . . 6 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
8 | 7 | eqcomd 2094 | . . . . 5 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
9 | ifbothdc.2 | . . . . 5 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
10 | 8, 9 | syl 14 | . . . 4 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜃)) |
11 | 10 | biimpcd 158 | . . 3 ⊢ (𝜒 → (¬ 𝜑 → 𝜃)) |
12 | 11 | 3ad2ant2 966 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ DECID 𝜑) → (¬ 𝜑 → 𝜃)) |
13 | exmiddc 783 | . . 3 ⊢ (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑)) | |
14 | 13 | 3ad2ant3 967 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ DECID 𝜑) → (𝜑 ∨ ¬ 𝜑)) |
15 | 6, 12, 14 | mpjaod 674 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ DECID 𝜑) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∨ wo 665 DECID wdc 781 ∧ w3a 925 = wceq 1290 ifcif 3397 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-11 1443 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-dc 782 df-3an 927 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-if 3398 |
This theorem is referenced by: isumlessdc 10944 |
Copyright terms: Public domain | W3C validator |