ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbothdc GIF version

Theorem ifbothdc 3558
Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
ifbothdc.1 (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓𝜃))
ifbothdc.2 (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒𝜃))
Assertion
Ref Expression
ifbothdc ((𝜓𝜒DECID 𝜑) → 𝜃)

Proof of Theorem ifbothdc
StepHypRef Expression
1 iftrue 3531 . . . . . 6 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
21eqcomd 2176 . . . . 5 (𝜑𝐴 = if(𝜑, 𝐴, 𝐵))
3 ifbothdc.1 . . . . 5 (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓𝜃))
42, 3syl 14 . . . 4 (𝜑 → (𝜓𝜃))
54biimpcd 158 . . 3 (𝜓 → (𝜑𝜃))
653ad2ant1 1013 . 2 ((𝜓𝜒DECID 𝜑) → (𝜑𝜃))
7 iffalse 3534 . . . . . 6 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
87eqcomd 2176 . . . . 5 𝜑𝐵 = if(𝜑, 𝐴, 𝐵))
9 ifbothdc.2 . . . . 5 (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒𝜃))
108, 9syl 14 . . . 4 𝜑 → (𝜒𝜃))
1110biimpcd 158 . . 3 (𝜒 → (¬ 𝜑𝜃))
12113ad2ant2 1014 . 2 ((𝜓𝜒DECID 𝜑) → (¬ 𝜑𝜃))
13 exmiddc 831 . . 3 (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑))
14133ad2ant3 1015 . 2 ((𝜓𝜒DECID 𝜑) → (𝜑 ∨ ¬ 𝜑))
156, 12, 14mpjaod 713 1 ((𝜓𝜒DECID 𝜑) → 𝜃)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wo 703  DECID wdc 829  w3a 973   = wceq 1348  ifcif 3526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-if 3527
This theorem is referenced by:  isumlessdc  11459  pcmptdvds  12297
  Copyright terms: Public domain W3C validator