![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isumlessdc | GIF version |
Description: A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
isumless.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumless.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumless.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
isumless.4 | ⊢ (𝜑 → 𝐴 ⊆ 𝑍) |
isumless.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
isumless.dc | ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 DECID 𝑘 ∈ 𝐴) |
isumless.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) |
isumless.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵) |
isumless.8 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
isumlessdc | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumless.4 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑍) | |
2 | isumless.dc | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 DECID 𝑘 ∈ 𝐴) | |
3 | 1 | sselda 3179 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝑍) |
4 | isumless.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
5 | 4 | recnd 8048 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
6 | 3, 5 | syldan 282 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
7 | 6 | ralrimiva 2567 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
8 | isumless.2 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
9 | isumless.1 | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
10 | 9 | eqimssi 3235 | . . . . . 6 ⊢ 𝑍 ⊆ (ℤ≥‘𝑀) |
11 | 10 | a1i 9 | . . . . 5 ⊢ (𝜑 → 𝑍 ⊆ (ℤ≥‘𝑀)) |
12 | 9 | eleq2i 2260 | . . . . . . . . . 10 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
13 | 12 | biimpri 133 | . . . . . . . . 9 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ 𝑍) |
14 | 13 | orcd 734 | . . . . . . . 8 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ 𝑍 ∨ ¬ 𝑘 ∈ 𝑍)) |
15 | df-dc 836 | . . . . . . . 8 ⊢ (DECID 𝑘 ∈ 𝑍 ↔ (𝑘 ∈ 𝑍 ∨ ¬ 𝑘 ∈ 𝑍)) | |
16 | 14, 15 | sylibr 134 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → DECID 𝑘 ∈ 𝑍) |
17 | 16 | rgen 2547 | . . . . . 6 ⊢ ∀𝑘 ∈ (ℤ≥‘𝑀)DECID 𝑘 ∈ 𝑍 |
18 | 17 | a1i 9 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)DECID 𝑘 ∈ 𝑍) |
19 | 8, 11, 18 | 3jca 1179 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑘 ∈ (ℤ≥‘𝑀)DECID 𝑘 ∈ 𝑍)) |
20 | 19 | orcd 734 | . . 3 ⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑘 ∈ (ℤ≥‘𝑀)DECID 𝑘 ∈ 𝑍) ∨ 𝑍 ∈ Fin)) |
21 | 1, 2, 7, 20 | isumss2 11536 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐵, 0)) |
22 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
23 | isumless.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
24 | 23, 4 | eqeltrd 2270 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
25 | 24 | adantr 276 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ℝ) |
26 | 0red 8020 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ ¬ 𝑘 ∈ 𝐴) → 0 ∈ ℝ) | |
27 | 2 | r19.21bi 2582 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → DECID 𝑘 ∈ 𝐴) |
28 | 25, 26, 27 | ifcldadc 3586 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0) ∈ ℝ) |
29 | eleq1w 2254 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) | |
30 | fveq2 5554 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) | |
31 | 29, 30 | ifbieq1d 3579 | . . . . . 6 ⊢ (𝑗 = 𝑘 → if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
32 | eqid 2193 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0)) = (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0)) | |
33 | 31, 32 | fvmptg 5633 | . . . . 5 ⊢ ((𝑘 ∈ 𝑍 ∧ if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0) ∈ ℝ) → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
34 | 22, 28, 33 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
35 | 23 | ifeq1d 3574 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
36 | 34, 35 | eqtrd 2226 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
37 | 35, 28 | eqeltrrd 2271 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℝ) |
38 | 4 | leidd 8533 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ≤ 𝐵) |
39 | isumless.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵) | |
40 | breq1 4032 | . . . . 5 ⊢ (𝐵 = if(𝑘 ∈ 𝐴, 𝐵, 0) → (𝐵 ≤ 𝐵 ↔ if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵)) | |
41 | breq1 4032 | . . . . 5 ⊢ (0 = if(𝑘 ∈ 𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵)) | |
42 | 40, 41 | ifbothdc 3590 | . . . 4 ⊢ ((𝐵 ≤ 𝐵 ∧ 0 ≤ 𝐵 ∧ DECID 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵) |
43 | 38, 39, 27, 42 | syl3anc 1249 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵) |
44 | isumless.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
45 | 13, 27 | sylan2 286 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) |
46 | 9, 8, 44, 1, 45, 36, 6 | fsum3cvg3 11539 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))) ∈ dom ⇝ ) |
47 | isumless.8 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
48 | 9, 8, 36, 37, 23, 4, 43, 46, 47 | isumle 11638 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ Σ𝑘 ∈ 𝑍 𝐵) |
49 | 21, 48 | eqbrtrd 4051 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3153 ifcif 3557 class class class wbr 4029 ↦ cmpt 4090 dom cdm 4659 ‘cfv 5254 Fincfn 6794 ℂcc 7870 ℝcr 7871 0cc0 7872 + caddc 7875 ≤ cle 8055 ℤcz 9317 ℤ≥cuz 9592 seqcseq 10518 ⇝ cli 11421 Σcsu 11496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-oadd 6473 df-er 6587 df-en 6795 df-dom 6796 df-fin 6797 df-sup 7043 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-exp 10610 df-ihash 10847 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-sumdc 11497 |
This theorem is referenced by: mertenslemi1 11678 |
Copyright terms: Public domain | W3C validator |