Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isumlessdc | GIF version |
Description: A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
isumless.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumless.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumless.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
isumless.4 | ⊢ (𝜑 → 𝐴 ⊆ 𝑍) |
isumless.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
isumless.dc | ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 DECID 𝑘 ∈ 𝐴) |
isumless.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) |
isumless.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵) |
isumless.8 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
isumlessdc | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumless.4 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑍) | |
2 | isumless.dc | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 DECID 𝑘 ∈ 𝐴) | |
3 | 1 | sselda 3147 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝑍) |
4 | isumless.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
5 | 4 | recnd 7948 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
6 | 3, 5 | syldan 280 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
7 | 6 | ralrimiva 2543 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
8 | isumless.2 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
9 | isumless.1 | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
10 | 9 | eqimssi 3203 | . . . . . 6 ⊢ 𝑍 ⊆ (ℤ≥‘𝑀) |
11 | 10 | a1i 9 | . . . . 5 ⊢ (𝜑 → 𝑍 ⊆ (ℤ≥‘𝑀)) |
12 | 9 | eleq2i 2237 | . . . . . . . . . 10 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
13 | 12 | biimpri 132 | . . . . . . . . 9 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ 𝑍) |
14 | 13 | orcd 728 | . . . . . . . 8 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ 𝑍 ∨ ¬ 𝑘 ∈ 𝑍)) |
15 | df-dc 830 | . . . . . . . 8 ⊢ (DECID 𝑘 ∈ 𝑍 ↔ (𝑘 ∈ 𝑍 ∨ ¬ 𝑘 ∈ 𝑍)) | |
16 | 14, 15 | sylibr 133 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → DECID 𝑘 ∈ 𝑍) |
17 | 16 | rgen 2523 | . . . . . 6 ⊢ ∀𝑘 ∈ (ℤ≥‘𝑀)DECID 𝑘 ∈ 𝑍 |
18 | 17 | a1i 9 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)DECID 𝑘 ∈ 𝑍) |
19 | 8, 11, 18 | 3jca 1172 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑘 ∈ (ℤ≥‘𝑀)DECID 𝑘 ∈ 𝑍)) |
20 | 19 | orcd 728 | . . 3 ⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑘 ∈ (ℤ≥‘𝑀)DECID 𝑘 ∈ 𝑍) ∨ 𝑍 ∈ Fin)) |
21 | 1, 2, 7, 20 | isumss2 11356 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐵, 0)) |
22 | simpr 109 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
23 | isumless.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
24 | 23, 4 | eqeltrd 2247 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
25 | 24 | adantr 274 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ℝ) |
26 | 0red 7921 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ ¬ 𝑘 ∈ 𝐴) → 0 ∈ ℝ) | |
27 | 2 | r19.21bi 2558 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → DECID 𝑘 ∈ 𝐴) |
28 | 25, 26, 27 | ifcldadc 3555 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0) ∈ ℝ) |
29 | eleq1w 2231 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) | |
30 | fveq2 5496 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) | |
31 | 29, 30 | ifbieq1d 3548 | . . . . . 6 ⊢ (𝑗 = 𝑘 → if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
32 | eqid 2170 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0)) = (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0)) | |
33 | 31, 32 | fvmptg 5572 | . . . . 5 ⊢ ((𝑘 ∈ 𝑍 ∧ if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0) ∈ ℝ) → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
34 | 22, 28, 33 | syl2anc 409 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
35 | 23 | ifeq1d 3543 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
36 | 34, 35 | eqtrd 2203 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
37 | 35, 28 | eqeltrrd 2248 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℝ) |
38 | 4 | leidd 8433 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ≤ 𝐵) |
39 | isumless.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵) | |
40 | breq1 3992 | . . . . 5 ⊢ (𝐵 = if(𝑘 ∈ 𝐴, 𝐵, 0) → (𝐵 ≤ 𝐵 ↔ if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵)) | |
41 | breq1 3992 | . . . . 5 ⊢ (0 = if(𝑘 ∈ 𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵)) | |
42 | 40, 41 | ifbothdc 3558 | . . . 4 ⊢ ((𝐵 ≤ 𝐵 ∧ 0 ≤ 𝐵 ∧ DECID 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵) |
43 | 38, 39, 27, 42 | syl3anc 1233 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵) |
44 | isumless.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
45 | 13, 27 | sylan2 284 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) |
46 | 9, 8, 44, 1, 45, 36, 6 | fsum3cvg3 11359 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))) ∈ dom ⇝ ) |
47 | isumless.8 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
48 | 9, 8, 36, 37, 23, 4, 43, 46, 47 | isumle 11458 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ Σ𝑘 ∈ 𝑍 𝐵) |
49 | 21, 48 | eqbrtrd 4011 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 703 DECID wdc 829 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ⊆ wss 3121 ifcif 3526 class class class wbr 3989 ↦ cmpt 4050 dom cdm 4611 ‘cfv 5198 Fincfn 6718 ℂcc 7772 ℝcr 7773 0cc0 7774 + caddc 7777 ≤ cle 7955 ℤcz 9212 ℤ≥cuz 9487 seqcseq 10401 ⇝ cli 11241 Σcsu 11316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-oadd 6399 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-sup 6961 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-fz 9966 df-fzo 10099 df-seqfrec 10402 df-exp 10476 df-ihash 10710 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 |
This theorem is referenced by: mertenslemi1 11498 |
Copyright terms: Public domain | W3C validator |