![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isumlessdc | GIF version |
Description: A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
isumless.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumless.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumless.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
isumless.4 | ⊢ (𝜑 → 𝐴 ⊆ 𝑍) |
isumless.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
isumless.dc | ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 DECID 𝑘 ∈ 𝐴) |
isumless.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) |
isumless.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵) |
isumless.8 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
isumlessdc | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumless.4 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑍) | |
2 | isumless.dc | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 DECID 𝑘 ∈ 𝐴) | |
3 | 1 | sselda 3157 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝑍) |
4 | isumless.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
5 | 4 | recnd 7988 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
6 | 3, 5 | syldan 282 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
7 | 6 | ralrimiva 2550 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
8 | isumless.2 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
9 | isumless.1 | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
10 | 9 | eqimssi 3213 | . . . . . 6 ⊢ 𝑍 ⊆ (ℤ≥‘𝑀) |
11 | 10 | a1i 9 | . . . . 5 ⊢ (𝜑 → 𝑍 ⊆ (ℤ≥‘𝑀)) |
12 | 9 | eleq2i 2244 | . . . . . . . . . 10 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
13 | 12 | biimpri 133 | . . . . . . . . 9 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ 𝑍) |
14 | 13 | orcd 733 | . . . . . . . 8 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ 𝑍 ∨ ¬ 𝑘 ∈ 𝑍)) |
15 | df-dc 835 | . . . . . . . 8 ⊢ (DECID 𝑘 ∈ 𝑍 ↔ (𝑘 ∈ 𝑍 ∨ ¬ 𝑘 ∈ 𝑍)) | |
16 | 14, 15 | sylibr 134 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → DECID 𝑘 ∈ 𝑍) |
17 | 16 | rgen 2530 | . . . . . 6 ⊢ ∀𝑘 ∈ (ℤ≥‘𝑀)DECID 𝑘 ∈ 𝑍 |
18 | 17 | a1i 9 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)DECID 𝑘 ∈ 𝑍) |
19 | 8, 11, 18 | 3jca 1177 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑘 ∈ (ℤ≥‘𝑀)DECID 𝑘 ∈ 𝑍)) |
20 | 19 | orcd 733 | . . 3 ⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑘 ∈ (ℤ≥‘𝑀)DECID 𝑘 ∈ 𝑍) ∨ 𝑍 ∈ Fin)) |
21 | 1, 2, 7, 20 | isumss2 11403 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐵, 0)) |
22 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
23 | isumless.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
24 | 23, 4 | eqeltrd 2254 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
25 | 24 | adantr 276 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ℝ) |
26 | 0red 7960 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ ¬ 𝑘 ∈ 𝐴) → 0 ∈ ℝ) | |
27 | 2 | r19.21bi 2565 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → DECID 𝑘 ∈ 𝐴) |
28 | 25, 26, 27 | ifcldadc 3565 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0) ∈ ℝ) |
29 | eleq1w 2238 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) | |
30 | fveq2 5517 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) | |
31 | 29, 30 | ifbieq1d 3558 | . . . . . 6 ⊢ (𝑗 = 𝑘 → if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
32 | eqid 2177 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0)) = (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0)) | |
33 | 31, 32 | fvmptg 5594 | . . . . 5 ⊢ ((𝑘 ∈ 𝑍 ∧ if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0) ∈ ℝ) → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
34 | 22, 28, 33 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
35 | 23 | ifeq1d 3553 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
36 | 34, 35 | eqtrd 2210 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
37 | 35, 28 | eqeltrrd 2255 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℝ) |
38 | 4 | leidd 8473 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ≤ 𝐵) |
39 | isumless.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵) | |
40 | breq1 4008 | . . . . 5 ⊢ (𝐵 = if(𝑘 ∈ 𝐴, 𝐵, 0) → (𝐵 ≤ 𝐵 ↔ if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵)) | |
41 | breq1 4008 | . . . . 5 ⊢ (0 = if(𝑘 ∈ 𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵)) | |
42 | 40, 41 | ifbothdc 3569 | . . . 4 ⊢ ((𝐵 ≤ 𝐵 ∧ 0 ≤ 𝐵 ∧ DECID 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵) |
43 | 38, 39, 27, 42 | syl3anc 1238 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵) |
44 | isumless.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
45 | 13, 27 | sylan2 286 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) |
46 | 9, 8, 44, 1, 45, 36, 6 | fsum3cvg3 11406 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))) ∈ dom ⇝ ) |
47 | isumless.8 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
48 | 9, 8, 36, 37, 23, 4, 43, 46, 47 | isumle 11505 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ Σ𝑘 ∈ 𝑍 𝐵) |
49 | 21, 48 | eqbrtrd 4027 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 708 DECID wdc 834 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ⊆ wss 3131 ifcif 3536 class class class wbr 4005 ↦ cmpt 4066 dom cdm 4628 ‘cfv 5218 Fincfn 6742 ℂcc 7811 ℝcr 7812 0cc0 7813 + caddc 7816 ≤ cle 7995 ℤcz 9255 ℤ≥cuz 9530 seqcseq 10447 ⇝ cli 11288 Σcsu 11363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-frec 6394 df-1o 6419 df-oadd 6423 df-er 6537 df-en 6743 df-dom 6744 df-fin 6745 df-sup 6985 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-n0 9179 df-z 9256 df-uz 9531 df-q 9622 df-rp 9656 df-fz 10011 df-fzo 10145 df-seqfrec 10448 df-exp 10522 df-ihash 10758 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 df-clim 11289 df-sumdc 11364 |
This theorem is referenced by: mertenslemi1 11545 |
Copyright terms: Public domain | W3C validator |