Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumlessdc GIF version

Theorem isumlessdc 11258
 Description: A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumless.1 𝑍 = (ℤ𝑀)
isumless.2 (𝜑𝑀 ∈ ℤ)
isumless.3 (𝜑𝐴 ∈ Fin)
isumless.4 (𝜑𝐴𝑍)
isumless.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
isumless.dc (𝜑 → ∀𝑘𝑍 DECID 𝑘𝐴)
isumless.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
isumless.7 ((𝜑𝑘𝑍) → 0 ≤ 𝐵)
isumless.8 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumlessdc (𝜑 → Σ𝑘𝐴 𝐵 ≤ Σ𝑘𝑍 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem isumlessdc
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 isumless.4 . . 3 (𝜑𝐴𝑍)
2 isumless.dc . . 3 (𝜑 → ∀𝑘𝑍 DECID 𝑘𝐴)
31sselda 3092 . . . . 5 ((𝜑𝑘𝐴) → 𝑘𝑍)
4 isumless.6 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
54recnd 7787 . . . . 5 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
63, 5syldan 280 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
76ralrimiva 2503 . . 3 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
8 isumless.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
9 isumless.1 . . . . . . 7 𝑍 = (ℤ𝑀)
109eqimssi 3148 . . . . . 6 𝑍 ⊆ (ℤ𝑀)
1110a1i 9 . . . . 5 (𝜑𝑍 ⊆ (ℤ𝑀))
129eleq2i 2204 . . . . . . . . . 10 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
1312biimpri 132 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍)
1413orcd 722 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) → (𝑘𝑍 ∨ ¬ 𝑘𝑍))
15 df-dc 820 . . . . . . . 8 (DECID 𝑘𝑍 ↔ (𝑘𝑍 ∨ ¬ 𝑘𝑍))
1614, 15sylibr 133 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → DECID 𝑘𝑍)
1716rgen 2483 . . . . . 6 𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍
1817a1i 9 . . . . 5 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍)
198, 11, 183jca 1161 . . . 4 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ𝑀) ∧ ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍))
2019orcd 722 . . 3 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ𝑀) ∧ ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍) ∨ 𝑍 ∈ Fin))
211, 2, 7, 20isumss2 11155 . 2 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘𝑍 if(𝑘𝐴, 𝐵, 0))
22 simpr 109 . . . . 5 ((𝜑𝑘𝑍) → 𝑘𝑍)
23 isumless.5 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
2423, 4eqeltrd 2214 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
2524adantr 274 . . . . . 6 (((𝜑𝑘𝑍) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℝ)
26 0red 7760 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → 0 ∈ ℝ)
272r19.21bi 2518 . . . . . 6 ((𝜑𝑘𝑍) → DECID 𝑘𝐴)
2825, 26, 27ifcldadc 3496 . . . . 5 ((𝜑𝑘𝑍) → if(𝑘𝐴, (𝐹𝑘), 0) ∈ ℝ)
29 eleq1w 2198 . . . . . . 7 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
30 fveq2 5414 . . . . . . 7 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
3129, 30ifbieq1d 3489 . . . . . 6 (𝑗 = 𝑘 → if(𝑗𝐴, (𝐹𝑗), 0) = if(𝑘𝐴, (𝐹𝑘), 0))
32 eqid 2137 . . . . . 6 (𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0)) = (𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))
3331, 32fvmptg 5490 . . . . 5 ((𝑘𝑍 ∧ if(𝑘𝐴, (𝐹𝑘), 0) ∈ ℝ) → ((𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))‘𝑘) = if(𝑘𝐴, (𝐹𝑘), 0))
3422, 28, 33syl2anc 408 . . . 4 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))‘𝑘) = if(𝑘𝐴, (𝐹𝑘), 0))
3523ifeq1d 3484 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐴, (𝐹𝑘), 0) = if(𝑘𝐴, 𝐵, 0))
3634, 35eqtrd 2170 . . 3 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))‘𝑘) = if(𝑘𝐴, 𝐵, 0))
3735, 28eqeltrrd 2215 . . 3 ((𝜑𝑘𝑍) → if(𝑘𝐴, 𝐵, 0) ∈ ℝ)
384leidd 8269 . . . 4 ((𝜑𝑘𝑍) → 𝐵𝐵)
39 isumless.7 . . . 4 ((𝜑𝑘𝑍) → 0 ≤ 𝐵)
40 breq1 3927 . . . . 5 (𝐵 = if(𝑘𝐴, 𝐵, 0) → (𝐵𝐵 ↔ if(𝑘𝐴, 𝐵, 0) ≤ 𝐵))
41 breq1 3927 . . . . 5 (0 = if(𝑘𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ if(𝑘𝐴, 𝐵, 0) ≤ 𝐵))
4240, 41ifbothdc 3499 . . . 4 ((𝐵𝐵 ∧ 0 ≤ 𝐵DECID 𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ≤ 𝐵)
4338, 39, 27, 42syl3anc 1216 . . 3 ((𝜑𝑘𝑍) → if(𝑘𝐴, 𝐵, 0) ≤ 𝐵)
44 isumless.3 . . . 4 (𝜑𝐴 ∈ Fin)
4513, 27sylan2 284 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
469, 8, 44, 1, 45, 36, 6fsum3cvg3 11158 . . 3 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))) ∈ dom ⇝ )
47 isumless.8 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
489, 8, 36, 37, 23, 4, 43, 46, 47isumle 11257 . 2 (𝜑 → Σ𝑘𝑍 if(𝑘𝐴, 𝐵, 0) ≤ Σ𝑘𝑍 𝐵)
4921, 48eqbrtrd 3945 1 (𝜑 → Σ𝑘𝐴 𝐵 ≤ Σ𝑘𝑍 𝐵)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ∨ wo 697  DECID wdc 819   ∧ w3a 962   = wceq 1331   ∈ wcel 1480  ∀wral 2414   ⊆ wss 3066  ifcif 3469   class class class wbr 3924   ↦ cmpt 3984  dom cdm 4534  ‘cfv 5118  Fincfn 6627  ℂcc 7611  ℝcr 7612  0cc0 7613   + caddc 7616   ≤ cle 7794  ℤcz 9047  ℤ≥cuz 9319  seqcseq 10211   ⇝ cli 11040  Σcsu 11115 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-frec 6281  df-1o 6306  df-oadd 6310  df-er 6422  df-en 6628  df-dom 6629  df-fin 6630  df-sup 6864  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fzo 9913  df-seqfrec 10212  df-exp 10286  df-ihash 10515  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-clim 11041  df-sumdc 11116 This theorem is referenced by:  mertenslemi1  11297
 Copyright terms: Public domain W3C validator