| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isumlessdc | GIF version | ||
| Description: A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| isumless.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| isumless.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| isumless.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| isumless.4 | ⊢ (𝜑 → 𝐴 ⊆ 𝑍) |
| isumless.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
| isumless.dc | ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 DECID 𝑘 ∈ 𝐴) |
| isumless.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) |
| isumless.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵) |
| isumless.8 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| Ref | Expression |
|---|---|
| isumlessdc | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumless.4 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑍) | |
| 2 | isumless.dc | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 DECID 𝑘 ∈ 𝐴) | |
| 3 | 1 | sselda 3194 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝑍) |
| 4 | isumless.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
| 5 | 4 | recnd 8108 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
| 6 | 3, 5 | syldan 282 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 7 | 6 | ralrimiva 2580 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 8 | isumless.2 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 9 | isumless.1 | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 10 | 9 | eqimssi 3250 | . . . . . 6 ⊢ 𝑍 ⊆ (ℤ≥‘𝑀) |
| 11 | 10 | a1i 9 | . . . . 5 ⊢ (𝜑 → 𝑍 ⊆ (ℤ≥‘𝑀)) |
| 12 | 9 | eleq2i 2273 | . . . . . . . . . 10 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
| 13 | 12 | biimpri 133 | . . . . . . . . 9 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ 𝑍) |
| 14 | 13 | orcd 735 | . . . . . . . 8 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ 𝑍 ∨ ¬ 𝑘 ∈ 𝑍)) |
| 15 | df-dc 837 | . . . . . . . 8 ⊢ (DECID 𝑘 ∈ 𝑍 ↔ (𝑘 ∈ 𝑍 ∨ ¬ 𝑘 ∈ 𝑍)) | |
| 16 | 14, 15 | sylibr 134 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → DECID 𝑘 ∈ 𝑍) |
| 17 | 16 | rgen 2560 | . . . . . 6 ⊢ ∀𝑘 ∈ (ℤ≥‘𝑀)DECID 𝑘 ∈ 𝑍 |
| 18 | 17 | a1i 9 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)DECID 𝑘 ∈ 𝑍) |
| 19 | 8, 11, 18 | 3jca 1180 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑘 ∈ (ℤ≥‘𝑀)DECID 𝑘 ∈ 𝑍)) |
| 20 | 19 | orcd 735 | . . 3 ⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑘 ∈ (ℤ≥‘𝑀)DECID 𝑘 ∈ 𝑍) ∨ 𝑍 ∈ Fin)) |
| 21 | 1, 2, 7, 20 | isumss2 11748 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐵, 0)) |
| 22 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
| 23 | isumless.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
| 24 | 23, 4 | eqeltrd 2283 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
| 25 | 24 | adantr 276 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ℝ) |
| 26 | 0red 8080 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ ¬ 𝑘 ∈ 𝐴) → 0 ∈ ℝ) | |
| 27 | 2 | r19.21bi 2595 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → DECID 𝑘 ∈ 𝐴) |
| 28 | 25, 26, 27 | ifcldadc 3601 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0) ∈ ℝ) |
| 29 | eleq1w 2267 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) | |
| 30 | fveq2 5583 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) | |
| 31 | 29, 30 | ifbieq1d 3594 | . . . . . 6 ⊢ (𝑗 = 𝑘 → if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
| 32 | eqid 2206 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0)) = (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0)) | |
| 33 | 31, 32 | fvmptg 5662 | . . . . 5 ⊢ ((𝑘 ∈ 𝑍 ∧ if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0) ∈ ℝ) → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
| 34 | 22, 28, 33 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
| 35 | 23 | ifeq1d 3589 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
| 36 | 34, 35 | eqtrd 2239 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
| 37 | 35, 28 | eqeltrrd 2284 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℝ) |
| 38 | 4 | leidd 8594 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ≤ 𝐵) |
| 39 | isumless.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵) | |
| 40 | breq1 4050 | . . . . 5 ⊢ (𝐵 = if(𝑘 ∈ 𝐴, 𝐵, 0) → (𝐵 ≤ 𝐵 ↔ if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵)) | |
| 41 | breq1 4050 | . . . . 5 ⊢ (0 = if(𝑘 ∈ 𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵)) | |
| 42 | 40, 41 | ifbothdc 3606 | . . . 4 ⊢ ((𝐵 ≤ 𝐵 ∧ 0 ≤ 𝐵 ∧ DECID 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵) |
| 43 | 38, 39, 27, 42 | syl3anc 1250 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵) |
| 44 | isumless.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 45 | 13, 27 | sylan2 286 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) |
| 46 | 9, 8, 44, 1, 45, 36, 6 | fsum3cvg3 11751 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))) ∈ dom ⇝ ) |
| 47 | isumless.8 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
| 48 | 9, 8, 36, 37, 23, 4, 43, 46, 47 | isumle 11850 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ Σ𝑘 ∈ 𝑍 𝐵) |
| 49 | 21, 48 | eqbrtrd 4069 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 710 DECID wdc 836 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3167 ifcif 3572 class class class wbr 4047 ↦ cmpt 4109 dom cdm 4679 ‘cfv 5276 Fincfn 6834 ℂcc 7930 ℝcr 7931 0cc0 7932 + caddc 7935 ≤ cle 8115 ℤcz 9379 ℤ≥cuz 9655 seqcseq 10599 ⇝ cli 11633 Σcsu 11708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-frec 6484 df-1o 6509 df-oadd 6513 df-er 6627 df-en 6835 df-dom 6836 df-fin 6837 df-sup 7093 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fzo 10272 df-seqfrec 10600 df-exp 10691 df-ihash 10928 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-clim 11634 df-sumdc 11709 |
| This theorem is referenced by: mertenslemi1 11890 |
| Copyright terms: Public domain | W3C validator |