ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumlessdc GIF version

Theorem isumlessdc 11506
Description: A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumless.1 𝑍 = (ℤ𝑀)
isumless.2 (𝜑𝑀 ∈ ℤ)
isumless.3 (𝜑𝐴 ∈ Fin)
isumless.4 (𝜑𝐴𝑍)
isumless.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
isumless.dc (𝜑 → ∀𝑘𝑍 DECID 𝑘𝐴)
isumless.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
isumless.7 ((𝜑𝑘𝑍) → 0 ≤ 𝐵)
isumless.8 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumlessdc (𝜑 → Σ𝑘𝐴 𝐵 ≤ Σ𝑘𝑍 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem isumlessdc
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 isumless.4 . . 3 (𝜑𝐴𝑍)
2 isumless.dc . . 3 (𝜑 → ∀𝑘𝑍 DECID 𝑘𝐴)
31sselda 3157 . . . . 5 ((𝜑𝑘𝐴) → 𝑘𝑍)
4 isumless.6 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
54recnd 7988 . . . . 5 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
63, 5syldan 282 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
76ralrimiva 2550 . . 3 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
8 isumless.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
9 isumless.1 . . . . . . 7 𝑍 = (ℤ𝑀)
109eqimssi 3213 . . . . . 6 𝑍 ⊆ (ℤ𝑀)
1110a1i 9 . . . . 5 (𝜑𝑍 ⊆ (ℤ𝑀))
129eleq2i 2244 . . . . . . . . . 10 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
1312biimpri 133 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍)
1413orcd 733 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) → (𝑘𝑍 ∨ ¬ 𝑘𝑍))
15 df-dc 835 . . . . . . . 8 (DECID 𝑘𝑍 ↔ (𝑘𝑍 ∨ ¬ 𝑘𝑍))
1614, 15sylibr 134 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → DECID 𝑘𝑍)
1716rgen 2530 . . . . . 6 𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍
1817a1i 9 . . . . 5 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍)
198, 11, 183jca 1177 . . . 4 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ𝑀) ∧ ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍))
2019orcd 733 . . 3 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ𝑀) ∧ ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍) ∨ 𝑍 ∈ Fin))
211, 2, 7, 20isumss2 11403 . 2 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘𝑍 if(𝑘𝐴, 𝐵, 0))
22 simpr 110 . . . . 5 ((𝜑𝑘𝑍) → 𝑘𝑍)
23 isumless.5 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
2423, 4eqeltrd 2254 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
2524adantr 276 . . . . . 6 (((𝜑𝑘𝑍) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℝ)
26 0red 7960 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → 0 ∈ ℝ)
272r19.21bi 2565 . . . . . 6 ((𝜑𝑘𝑍) → DECID 𝑘𝐴)
2825, 26, 27ifcldadc 3565 . . . . 5 ((𝜑𝑘𝑍) → if(𝑘𝐴, (𝐹𝑘), 0) ∈ ℝ)
29 eleq1w 2238 . . . . . . 7 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
30 fveq2 5517 . . . . . . 7 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
3129, 30ifbieq1d 3558 . . . . . 6 (𝑗 = 𝑘 → if(𝑗𝐴, (𝐹𝑗), 0) = if(𝑘𝐴, (𝐹𝑘), 0))
32 eqid 2177 . . . . . 6 (𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0)) = (𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))
3331, 32fvmptg 5594 . . . . 5 ((𝑘𝑍 ∧ if(𝑘𝐴, (𝐹𝑘), 0) ∈ ℝ) → ((𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))‘𝑘) = if(𝑘𝐴, (𝐹𝑘), 0))
3422, 28, 33syl2anc 411 . . . 4 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))‘𝑘) = if(𝑘𝐴, (𝐹𝑘), 0))
3523ifeq1d 3553 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐴, (𝐹𝑘), 0) = if(𝑘𝐴, 𝐵, 0))
3634, 35eqtrd 2210 . . 3 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))‘𝑘) = if(𝑘𝐴, 𝐵, 0))
3735, 28eqeltrrd 2255 . . 3 ((𝜑𝑘𝑍) → if(𝑘𝐴, 𝐵, 0) ∈ ℝ)
384leidd 8473 . . . 4 ((𝜑𝑘𝑍) → 𝐵𝐵)
39 isumless.7 . . . 4 ((𝜑𝑘𝑍) → 0 ≤ 𝐵)
40 breq1 4008 . . . . 5 (𝐵 = if(𝑘𝐴, 𝐵, 0) → (𝐵𝐵 ↔ if(𝑘𝐴, 𝐵, 0) ≤ 𝐵))
41 breq1 4008 . . . . 5 (0 = if(𝑘𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ if(𝑘𝐴, 𝐵, 0) ≤ 𝐵))
4240, 41ifbothdc 3569 . . . 4 ((𝐵𝐵 ∧ 0 ≤ 𝐵DECID 𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ≤ 𝐵)
4338, 39, 27, 42syl3anc 1238 . . 3 ((𝜑𝑘𝑍) → if(𝑘𝐴, 𝐵, 0) ≤ 𝐵)
44 isumless.3 . . . 4 (𝜑𝐴 ∈ Fin)
4513, 27sylan2 286 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
469, 8, 44, 1, 45, 36, 6fsum3cvg3 11406 . . 3 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))) ∈ dom ⇝ )
47 isumless.8 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
489, 8, 36, 37, 23, 4, 43, 46, 47isumle 11505 . 2 (𝜑 → Σ𝑘𝑍 if(𝑘𝐴, 𝐵, 0) ≤ Σ𝑘𝑍 𝐵)
4921, 48eqbrtrd 4027 1 (𝜑 → Σ𝑘𝐴 𝐵 ≤ Σ𝑘𝑍 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708  DECID wdc 834  w3a 978   = wceq 1353  wcel 2148  wral 2455  wss 3131  ifcif 3536   class class class wbr 4005  cmpt 4066  dom cdm 4628  cfv 5218  Fincfn 6742  cc 7811  cr 7812  0cc0 7813   + caddc 7816  cle 7995  cz 9255  cuz 9530  seqcseq 10447  cli 11288  Σcsu 11363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-sup 6985  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-ihash 10758  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-sumdc 11364
This theorem is referenced by:  mertenslemi1  11545
  Copyright terms: Public domain W3C validator