ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumlessdc GIF version

Theorem isumlessdc 11642
Description: A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumless.1 𝑍 = (ℤ𝑀)
isumless.2 (𝜑𝑀 ∈ ℤ)
isumless.3 (𝜑𝐴 ∈ Fin)
isumless.4 (𝜑𝐴𝑍)
isumless.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
isumless.dc (𝜑 → ∀𝑘𝑍 DECID 𝑘𝐴)
isumless.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
isumless.7 ((𝜑𝑘𝑍) → 0 ≤ 𝐵)
isumless.8 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumlessdc (𝜑 → Σ𝑘𝐴 𝐵 ≤ Σ𝑘𝑍 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem isumlessdc
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 isumless.4 . . 3 (𝜑𝐴𝑍)
2 isumless.dc . . 3 (𝜑 → ∀𝑘𝑍 DECID 𝑘𝐴)
31sselda 3180 . . . . 5 ((𝜑𝑘𝐴) → 𝑘𝑍)
4 isumless.6 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
54recnd 8050 . . . . 5 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
63, 5syldan 282 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
76ralrimiva 2567 . . 3 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
8 isumless.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
9 isumless.1 . . . . . . 7 𝑍 = (ℤ𝑀)
109eqimssi 3236 . . . . . 6 𝑍 ⊆ (ℤ𝑀)
1110a1i 9 . . . . 5 (𝜑𝑍 ⊆ (ℤ𝑀))
129eleq2i 2260 . . . . . . . . . 10 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
1312biimpri 133 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍)
1413orcd 734 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) → (𝑘𝑍 ∨ ¬ 𝑘𝑍))
15 df-dc 836 . . . . . . . 8 (DECID 𝑘𝑍 ↔ (𝑘𝑍 ∨ ¬ 𝑘𝑍))
1614, 15sylibr 134 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → DECID 𝑘𝑍)
1716rgen 2547 . . . . . 6 𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍
1817a1i 9 . . . . 5 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍)
198, 11, 183jca 1179 . . . 4 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ𝑀) ∧ ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍))
2019orcd 734 . . 3 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ𝑀) ∧ ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍) ∨ 𝑍 ∈ Fin))
211, 2, 7, 20isumss2 11539 . 2 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘𝑍 if(𝑘𝐴, 𝐵, 0))
22 simpr 110 . . . . 5 ((𝜑𝑘𝑍) → 𝑘𝑍)
23 isumless.5 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
2423, 4eqeltrd 2270 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
2524adantr 276 . . . . . 6 (((𝜑𝑘𝑍) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℝ)
26 0red 8022 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → 0 ∈ ℝ)
272r19.21bi 2582 . . . . . 6 ((𝜑𝑘𝑍) → DECID 𝑘𝐴)
2825, 26, 27ifcldadc 3587 . . . . 5 ((𝜑𝑘𝑍) → if(𝑘𝐴, (𝐹𝑘), 0) ∈ ℝ)
29 eleq1w 2254 . . . . . . 7 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
30 fveq2 5555 . . . . . . 7 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
3129, 30ifbieq1d 3580 . . . . . 6 (𝑗 = 𝑘 → if(𝑗𝐴, (𝐹𝑗), 0) = if(𝑘𝐴, (𝐹𝑘), 0))
32 eqid 2193 . . . . . 6 (𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0)) = (𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))
3331, 32fvmptg 5634 . . . . 5 ((𝑘𝑍 ∧ if(𝑘𝐴, (𝐹𝑘), 0) ∈ ℝ) → ((𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))‘𝑘) = if(𝑘𝐴, (𝐹𝑘), 0))
3422, 28, 33syl2anc 411 . . . 4 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))‘𝑘) = if(𝑘𝐴, (𝐹𝑘), 0))
3523ifeq1d 3575 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐴, (𝐹𝑘), 0) = if(𝑘𝐴, 𝐵, 0))
3634, 35eqtrd 2226 . . 3 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))‘𝑘) = if(𝑘𝐴, 𝐵, 0))
3735, 28eqeltrrd 2271 . . 3 ((𝜑𝑘𝑍) → if(𝑘𝐴, 𝐵, 0) ∈ ℝ)
384leidd 8535 . . . 4 ((𝜑𝑘𝑍) → 𝐵𝐵)
39 isumless.7 . . . 4 ((𝜑𝑘𝑍) → 0 ≤ 𝐵)
40 breq1 4033 . . . . 5 (𝐵 = if(𝑘𝐴, 𝐵, 0) → (𝐵𝐵 ↔ if(𝑘𝐴, 𝐵, 0) ≤ 𝐵))
41 breq1 4033 . . . . 5 (0 = if(𝑘𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ if(𝑘𝐴, 𝐵, 0) ≤ 𝐵))
4240, 41ifbothdc 3591 . . . 4 ((𝐵𝐵 ∧ 0 ≤ 𝐵DECID 𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ≤ 𝐵)
4338, 39, 27, 42syl3anc 1249 . . 3 ((𝜑𝑘𝑍) → if(𝑘𝐴, 𝐵, 0) ≤ 𝐵)
44 isumless.3 . . . 4 (𝜑𝐴 ∈ Fin)
4513, 27sylan2 286 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
469, 8, 44, 1, 45, 36, 6fsum3cvg3 11542 . . 3 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))) ∈ dom ⇝ )
47 isumless.8 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
489, 8, 36, 37, 23, 4, 43, 46, 47isumle 11641 . 2 (𝜑 → Σ𝑘𝑍 if(𝑘𝐴, 𝐵, 0) ≤ Σ𝑘𝑍 𝐵)
4921, 48eqbrtrd 4052 1 (𝜑 → Σ𝑘𝐴 𝐵 ≤ Σ𝑘𝑍 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2164  wral 2472  wss 3154  ifcif 3558   class class class wbr 4030  cmpt 4091  dom cdm 4660  cfv 5255  Fincfn 6796  cc 7872  cr 7873  0cc0 7874   + caddc 7877  cle 8057  cz 9320  cuz 9595  seqcseq 10521  cli 11424  Σcsu 11499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500
This theorem is referenced by:  mertenslemi1  11681
  Copyright terms: Public domain W3C validator