ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmptdvds GIF version

Theorem pcmptdvds 12541
Description: The partial products of the prime power map form a divisibility chain. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
pcmpt.2 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
pcmpt.3 (𝜑𝑁 ∈ ℕ)
pcmptdvds.3 (𝜑𝑀 ∈ (ℤ𝑁))
Assertion
Ref Expression
pcmptdvds (𝜑 → (seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀))

Proof of Theorem pcmptdvds
Dummy variables 𝑚 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.2 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
2 nfv 1542 . . . . . . . . . 10 𝑚 𝐴 ∈ ℕ0
3 nfcsb1v 3117 . . . . . . . . . . 11 𝑛𝑚 / 𝑛𝐴
43nfel1 2350 . . . . . . . . . 10 𝑛𝑚 / 𝑛𝐴 ∈ ℕ0
5 csbeq1a 3093 . . . . . . . . . . 11 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
65eleq1d 2265 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐴 ∈ ℕ0𝑚 / 𝑛𝐴 ∈ ℕ0))
72, 4, 6cbvralw 2723 . . . . . . . . 9 (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0 ↔ ∀𝑚 ∈ ℙ 𝑚 / 𝑛𝐴 ∈ ℕ0)
81, 7sylib 122 . . . . . . . 8 (𝜑 → ∀𝑚 ∈ ℙ 𝑚 / 𝑛𝐴 ∈ ℕ0)
9 csbeq1 3087 . . . . . . . . . 10 (𝑚 = 𝑝𝑚 / 𝑛𝐴 = 𝑝 / 𝑛𝐴)
109eleq1d 2265 . . . . . . . . 9 (𝑚 = 𝑝 → (𝑚 / 𝑛𝐴 ∈ ℕ0𝑝 / 𝑛𝐴 ∈ ℕ0))
1110rspcv 2864 . . . . . . . 8 (𝑝 ∈ ℙ → (∀𝑚 ∈ ℙ 𝑚 / 𝑛𝐴 ∈ ℕ0𝑝 / 𝑛𝐴 ∈ ℕ0))
128, 11mpan9 281 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → 𝑝 / 𝑛𝐴 ∈ ℕ0)
1312nn0ge0d 9324 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → 0 ≤ 𝑝 / 𝑛𝐴)
14 0le0 9098 . . . . . . 7 0 ≤ 0
1514a1i 9 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → 0 ≤ 0)
16 prmz 12306 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
17 pcmptdvds.3 . . . . . . . . . 10 (𝜑𝑀 ∈ (ℤ𝑁))
18 eluzelz 9629 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → 𝑀 ∈ ℤ)
1917, 18syl 14 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
2019adantr 276 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → 𝑀 ∈ ℤ)
21 zdcle 9421 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑝𝑀)
2216, 20, 21syl2an2 594 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → DECID 𝑝𝑀)
23 pcmpt.3 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
2423adantr 276 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
2524nnzd 9466 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
26 zdcle 9421 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑝𝑁)
2716, 25, 26syl2an2 594 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → DECID 𝑝𝑁)
28 dcn 843 . . . . . . . 8 (DECID 𝑝𝑁DECID ¬ 𝑝𝑁)
2927, 28syl 14 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → DECID ¬ 𝑝𝑁)
30 dcan2 936 . . . . . . 7 (DECID 𝑝𝑀 → (DECID ¬ 𝑝𝑁DECID (𝑝𝑀 ∧ ¬ 𝑝𝑁)))
3122, 29, 30sylc 62 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → DECID (𝑝𝑀 ∧ ¬ 𝑝𝑁))
32 breq2 4038 . . . . . . 7 (𝑝 / 𝑛𝐴 = if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0) → (0 ≤ 𝑝 / 𝑛𝐴 ↔ 0 ≤ if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0)))
33 breq2 4038 . . . . . . 7 (0 = if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0) → (0 ≤ 0 ↔ 0 ≤ if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0)))
3432, 33ifbothdc 3595 . . . . . 6 ((0 ≤ 𝑝 / 𝑛𝐴 ∧ 0 ≤ 0 ∧ DECID (𝑝𝑀 ∧ ¬ 𝑝𝑁)) → 0 ≤ if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0))
3513, 15, 31, 34syl3anc 1249 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 0 ≤ if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0))
36 pcmpt.1 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
37 nfcv 2339 . . . . . . . 8 𝑚if(𝑛 ∈ ℙ, (𝑛𝐴), 1)
38 nfv 1542 . . . . . . . . 9 𝑛 𝑚 ∈ ℙ
39 nfcv 2339 . . . . . . . . . 10 𝑛𝑚
40 nfcv 2339 . . . . . . . . . 10 𝑛
4139, 40, 3nfov 5955 . . . . . . . . 9 𝑛(𝑚𝑚 / 𝑛𝐴)
42 nfcv 2339 . . . . . . . . 9 𝑛1
4338, 41, 42nfif 3590 . . . . . . . 8 𝑛if(𝑚 ∈ ℙ, (𝑚𝑚 / 𝑛𝐴), 1)
44 eleq1w 2257 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛 ∈ ℙ ↔ 𝑚 ∈ ℙ))
45 id 19 . . . . . . . . . 10 (𝑛 = 𝑚𝑛 = 𝑚)
4645, 5oveq12d 5943 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛𝐴) = (𝑚𝑚 / 𝑛𝐴))
4744, 46ifbieq1d 3584 . . . . . . . 8 (𝑛 = 𝑚 → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = if(𝑚 ∈ ℙ, (𝑚𝑚 / 𝑛𝐴), 1))
4837, 43, 47cbvmpt 4129 . . . . . . 7 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1)) = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (𝑚𝑚 / 𝑛𝐴), 1))
4936, 48eqtri 2217 . . . . . 6 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (𝑚𝑚 / 𝑛𝐴), 1))
508adantr 276 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ∀𝑚 ∈ ℙ 𝑚 / 𝑛𝐴 ∈ ℕ0)
51 simpr 110 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
5217adantr 276 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → 𝑀 ∈ (ℤ𝑁))
5349, 50, 24, 51, 9, 52pcmpt2 12540 . . . . 5 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0))
5435, 53breqtrrd 4062 . . . 4 ((𝜑𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))))
5554ralrimiva 2570 . . 3 (𝜑 → ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))))
5636, 1pcmptcl 12538 . . . . . . . 8 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
5756simprd 114 . . . . . . 7 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
58 eluznn 9693 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ)
5923, 17, 58syl2anc 411 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
6057, 59ffvelcdmd 5701 . . . . . 6 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ)
6160nnzd 9466 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℤ)
6257, 23ffvelcdmd 5701 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℕ)
63 znq 9717 . . . . 5 (((seq1( · , 𝐹)‘𝑀) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑁) ∈ ℕ) → ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ)
6461, 62, 63syl2anc 411 . . . 4 (𝜑 → ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ)
65 pcz 12528 . . . 4 (((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ → (((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)))))
6664, 65syl 14 . . 3 (𝜑 → (((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)))))
6755, 66mpbird 167 . 2 (𝜑 → ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ)
6862nnzd 9466 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℤ)
6962nnne0d 9054 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑁) ≠ 0)
70 dvdsval2 11974 . . 3 (((seq1( · , 𝐹)‘𝑁) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑁) ≠ 0 ∧ (seq1( · , 𝐹)‘𝑀) ∈ ℤ) → ((seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀) ↔ ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ))
7168, 69, 61, 70syl3anc 1249 . 2 (𝜑 → ((seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀) ↔ ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ))
7267, 71mpbird 167 1 (𝜑 → (seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  wral 2475  csb 3084  ifcif 3562   class class class wbr 4034  cmpt 4095  wf 5255  cfv 5259  (class class class)co 5925  0cc0 7898  1c1 7899   · cmul 7903  cle 8081   / cdiv 8718  cn 9009  0cn0 9268  cz 9345  cuz 9620  cq 9712  seqcseq 10558  cexp 10649  cdvds 11971  cprime 12302   pCnt cpc 12480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-xnn0 9332  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972  df-gcd 12148  df-prm 12303  df-pc 12481
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator