ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmptdvds GIF version

Theorem pcmptdvds 12290
Description: The partial products of the prime power map form a divisibility chain. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
pcmpt.2 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
pcmpt.3 (𝜑𝑁 ∈ ℕ)
pcmptdvds.3 (𝜑𝑀 ∈ (ℤ𝑁))
Assertion
Ref Expression
pcmptdvds (𝜑 → (seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀))

Proof of Theorem pcmptdvds
Dummy variables 𝑚 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.2 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
2 nfv 1521 . . . . . . . . . 10 𝑚 𝐴 ∈ ℕ0
3 nfcsb1v 3082 . . . . . . . . . . 11 𝑛𝑚 / 𝑛𝐴
43nfel1 2323 . . . . . . . . . 10 𝑛𝑚 / 𝑛𝐴 ∈ ℕ0
5 csbeq1a 3058 . . . . . . . . . . 11 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
65eleq1d 2239 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐴 ∈ ℕ0𝑚 / 𝑛𝐴 ∈ ℕ0))
72, 4, 6cbvralw 2691 . . . . . . . . 9 (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0 ↔ ∀𝑚 ∈ ℙ 𝑚 / 𝑛𝐴 ∈ ℕ0)
81, 7sylib 121 . . . . . . . 8 (𝜑 → ∀𝑚 ∈ ℙ 𝑚 / 𝑛𝐴 ∈ ℕ0)
9 csbeq1 3052 . . . . . . . . . 10 (𝑚 = 𝑝𝑚 / 𝑛𝐴 = 𝑝 / 𝑛𝐴)
109eleq1d 2239 . . . . . . . . 9 (𝑚 = 𝑝 → (𝑚 / 𝑛𝐴 ∈ ℕ0𝑝 / 𝑛𝐴 ∈ ℕ0))
1110rspcv 2830 . . . . . . . 8 (𝑝 ∈ ℙ → (∀𝑚 ∈ ℙ 𝑚 / 𝑛𝐴 ∈ ℕ0𝑝 / 𝑛𝐴 ∈ ℕ0))
128, 11mpan9 279 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → 𝑝 / 𝑛𝐴 ∈ ℕ0)
1312nn0ge0d 9184 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → 0 ≤ 𝑝 / 𝑛𝐴)
14 0le0 8960 . . . . . . 7 0 ≤ 0
1514a1i 9 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → 0 ≤ 0)
16 prmz 12058 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
17 pcmptdvds.3 . . . . . . . . . 10 (𝜑𝑀 ∈ (ℤ𝑁))
18 eluzelz 9489 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → 𝑀 ∈ ℤ)
1917, 18syl 14 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
2019adantr 274 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → 𝑀 ∈ ℤ)
21 zdcle 9281 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑝𝑀)
2216, 20, 21syl2an2 589 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → DECID 𝑝𝑀)
23 pcmpt.3 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
2423adantr 274 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
2524nnzd 9326 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
26 zdcle 9281 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑝𝑁)
2716, 25, 26syl2an2 589 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → DECID 𝑝𝑁)
28 dcn 837 . . . . . . . 8 (DECID 𝑝𝑁DECID ¬ 𝑝𝑁)
2927, 28syl 14 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → DECID ¬ 𝑝𝑁)
30 dcan2 929 . . . . . . 7 (DECID 𝑝𝑀 → (DECID ¬ 𝑝𝑁DECID (𝑝𝑀 ∧ ¬ 𝑝𝑁)))
3122, 29, 30sylc 62 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → DECID (𝑝𝑀 ∧ ¬ 𝑝𝑁))
32 breq2 3991 . . . . . . 7 (𝑝 / 𝑛𝐴 = if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0) → (0 ≤ 𝑝 / 𝑛𝐴 ↔ 0 ≤ if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0)))
33 breq2 3991 . . . . . . 7 (0 = if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0) → (0 ≤ 0 ↔ 0 ≤ if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0)))
3432, 33ifbothdc 3557 . . . . . 6 ((0 ≤ 𝑝 / 𝑛𝐴 ∧ 0 ≤ 0 ∧ DECID (𝑝𝑀 ∧ ¬ 𝑝𝑁)) → 0 ≤ if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0))
3513, 15, 31, 34syl3anc 1233 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 0 ≤ if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0))
36 pcmpt.1 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
37 nfcv 2312 . . . . . . . 8 𝑚if(𝑛 ∈ ℙ, (𝑛𝐴), 1)
38 nfv 1521 . . . . . . . . 9 𝑛 𝑚 ∈ ℙ
39 nfcv 2312 . . . . . . . . . 10 𝑛𝑚
40 nfcv 2312 . . . . . . . . . 10 𝑛
4139, 40, 3nfov 5881 . . . . . . . . 9 𝑛(𝑚𝑚 / 𝑛𝐴)
42 nfcv 2312 . . . . . . . . 9 𝑛1
4338, 41, 42nfif 3553 . . . . . . . 8 𝑛if(𝑚 ∈ ℙ, (𝑚𝑚 / 𝑛𝐴), 1)
44 eleq1w 2231 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛 ∈ ℙ ↔ 𝑚 ∈ ℙ))
45 id 19 . . . . . . . . . 10 (𝑛 = 𝑚𝑛 = 𝑚)
4645, 5oveq12d 5869 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛𝐴) = (𝑚𝑚 / 𝑛𝐴))
4744, 46ifbieq1d 3547 . . . . . . . 8 (𝑛 = 𝑚 → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = if(𝑚 ∈ ℙ, (𝑚𝑚 / 𝑛𝐴), 1))
4837, 43, 47cbvmpt 4082 . . . . . . 7 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1)) = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (𝑚𝑚 / 𝑛𝐴), 1))
4936, 48eqtri 2191 . . . . . 6 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (𝑚𝑚 / 𝑛𝐴), 1))
508adantr 274 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ∀𝑚 ∈ ℙ 𝑚 / 𝑛𝐴 ∈ ℕ0)
51 simpr 109 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
5217adantr 274 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → 𝑀 ∈ (ℤ𝑁))
5349, 50, 24, 51, 9, 52pcmpt2 12289 . . . . 5 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0))
5435, 53breqtrrd 4015 . . . 4 ((𝜑𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))))
5554ralrimiva 2543 . . 3 (𝜑 → ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))))
5636, 1pcmptcl 12287 . . . . . . . 8 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
5756simprd 113 . . . . . . 7 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
58 eluznn 9552 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ)
5923, 17, 58syl2anc 409 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
6057, 59ffvelrnd 5630 . . . . . 6 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ)
6160nnzd 9326 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℤ)
6257, 23ffvelrnd 5630 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℕ)
63 znq 9576 . . . . 5 (((seq1( · , 𝐹)‘𝑀) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑁) ∈ ℕ) → ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ)
6461, 62, 63syl2anc 409 . . . 4 (𝜑 → ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ)
65 pcz 12278 . . . 4 (((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ → (((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)))))
6664, 65syl 14 . . 3 (𝜑 → (((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)))))
6755, 66mpbird 166 . 2 (𝜑 → ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ)
6862nnzd 9326 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℤ)
6962nnne0d 8916 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑁) ≠ 0)
70 dvdsval2 11745 . . 3 (((seq1( · , 𝐹)‘𝑁) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑁) ≠ 0 ∧ (seq1( · , 𝐹)‘𝑀) ∈ ℤ) → ((seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀) ↔ ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ))
7168, 69, 61, 70syl3anc 1233 . 2 (𝜑 → ((seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀) ↔ ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ))
7267, 71mpbird 166 1 (𝜑 → (seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  DECID wdc 829   = wceq 1348  wcel 2141  wne 2340  wral 2448  csb 3049  ifcif 3525   class class class wbr 3987  cmpt 4048  wf 5192  cfv 5196  (class class class)co 5851  0cc0 7767  1c1 7768   · cmul 7772  cle 7948   / cdiv 8582  cn 8871  0cn0 9128  cz 9205  cuz 9480  cq 9571  seqcseq 10394  cexp 10468  cdvds 11742  cprime 12054   pCnt cpc 12231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885  ax-arch 7886  ax-caucvg 7887
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-1o 6393  df-2o 6394  df-er 6511  df-en 6717  df-fin 6719  df-sup 6959  df-inf 6960  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-inn 8872  df-2 8930  df-3 8931  df-4 8932  df-n0 9129  df-xnn0 9192  df-z 9206  df-uz 9481  df-q 9572  df-rp 9604  df-fz 9959  df-fzo 10092  df-fl 10219  df-mod 10272  df-seqfrec 10395  df-exp 10469  df-cj 10799  df-re 10800  df-im 10801  df-rsqrt 10955  df-abs 10956  df-dvds 11743  df-gcd 11891  df-prm 12055  df-pc 12232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator