ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmptdvds GIF version

Theorem pcmptdvds 12275
Description: The partial products of the prime power map form a divisibility chain. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
pcmpt.2 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
pcmpt.3 (𝜑𝑁 ∈ ℕ)
pcmptdvds.3 (𝜑𝑀 ∈ (ℤ𝑁))
Assertion
Ref Expression
pcmptdvds (𝜑 → (seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀))

Proof of Theorem pcmptdvds
Dummy variables 𝑚 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.2 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
2 nfv 1516 . . . . . . . . . 10 𝑚 𝐴 ∈ ℕ0
3 nfcsb1v 3078 . . . . . . . . . . 11 𝑛𝑚 / 𝑛𝐴
43nfel1 2319 . . . . . . . . . 10 𝑛𝑚 / 𝑛𝐴 ∈ ℕ0
5 csbeq1a 3054 . . . . . . . . . . 11 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
65eleq1d 2235 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐴 ∈ ℕ0𝑚 / 𝑛𝐴 ∈ ℕ0))
72, 4, 6cbvralw 2687 . . . . . . . . 9 (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0 ↔ ∀𝑚 ∈ ℙ 𝑚 / 𝑛𝐴 ∈ ℕ0)
81, 7sylib 121 . . . . . . . 8 (𝜑 → ∀𝑚 ∈ ℙ 𝑚 / 𝑛𝐴 ∈ ℕ0)
9 csbeq1 3048 . . . . . . . . . 10 (𝑚 = 𝑝𝑚 / 𝑛𝐴 = 𝑝 / 𝑛𝐴)
109eleq1d 2235 . . . . . . . . 9 (𝑚 = 𝑝 → (𝑚 / 𝑛𝐴 ∈ ℕ0𝑝 / 𝑛𝐴 ∈ ℕ0))
1110rspcv 2826 . . . . . . . 8 (𝑝 ∈ ℙ → (∀𝑚 ∈ ℙ 𝑚 / 𝑛𝐴 ∈ ℕ0𝑝 / 𝑛𝐴 ∈ ℕ0))
128, 11mpan9 279 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → 𝑝 / 𝑛𝐴 ∈ ℕ0)
1312nn0ge0d 9170 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → 0 ≤ 𝑝 / 𝑛𝐴)
14 0le0 8946 . . . . . . 7 0 ≤ 0
1514a1i 9 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → 0 ≤ 0)
16 prmz 12043 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
17 pcmptdvds.3 . . . . . . . . . 10 (𝜑𝑀 ∈ (ℤ𝑁))
18 eluzelz 9475 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → 𝑀 ∈ ℤ)
1917, 18syl 14 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
2019adantr 274 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → 𝑀 ∈ ℤ)
21 zdcle 9267 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑝𝑀)
2216, 20, 21syl2an2 584 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → DECID 𝑝𝑀)
23 pcmpt.3 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
2423adantr 274 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
2524nnzd 9312 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
26 zdcle 9267 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑝𝑁)
2716, 25, 26syl2an2 584 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → DECID 𝑝𝑁)
28 dcn 832 . . . . . . . 8 (DECID 𝑝𝑁DECID ¬ 𝑝𝑁)
2927, 28syl 14 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → DECID ¬ 𝑝𝑁)
30 dcan2 924 . . . . . . 7 (DECID 𝑝𝑀 → (DECID ¬ 𝑝𝑁DECID (𝑝𝑀 ∧ ¬ 𝑝𝑁)))
3122, 29, 30sylc 62 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → DECID (𝑝𝑀 ∧ ¬ 𝑝𝑁))
32 breq2 3986 . . . . . . 7 (𝑝 / 𝑛𝐴 = if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0) → (0 ≤ 𝑝 / 𝑛𝐴 ↔ 0 ≤ if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0)))
33 breq2 3986 . . . . . . 7 (0 = if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0) → (0 ≤ 0 ↔ 0 ≤ if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0)))
3432, 33ifbothdc 3552 . . . . . 6 ((0 ≤ 𝑝 / 𝑛𝐴 ∧ 0 ≤ 0 ∧ DECID (𝑝𝑀 ∧ ¬ 𝑝𝑁)) → 0 ≤ if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0))
3513, 15, 31, 34syl3anc 1228 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 0 ≤ if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0))
36 pcmpt.1 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
37 nfcv 2308 . . . . . . . 8 𝑚if(𝑛 ∈ ℙ, (𝑛𝐴), 1)
38 nfv 1516 . . . . . . . . 9 𝑛 𝑚 ∈ ℙ
39 nfcv 2308 . . . . . . . . . 10 𝑛𝑚
40 nfcv 2308 . . . . . . . . . 10 𝑛
4139, 40, 3nfov 5872 . . . . . . . . 9 𝑛(𝑚𝑚 / 𝑛𝐴)
42 nfcv 2308 . . . . . . . . 9 𝑛1
4338, 41, 42nfif 3548 . . . . . . . 8 𝑛if(𝑚 ∈ ℙ, (𝑚𝑚 / 𝑛𝐴), 1)
44 eleq1w 2227 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛 ∈ ℙ ↔ 𝑚 ∈ ℙ))
45 id 19 . . . . . . . . . 10 (𝑛 = 𝑚𝑛 = 𝑚)
4645, 5oveq12d 5860 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛𝐴) = (𝑚𝑚 / 𝑛𝐴))
4744, 46ifbieq1d 3542 . . . . . . . 8 (𝑛 = 𝑚 → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = if(𝑚 ∈ ℙ, (𝑚𝑚 / 𝑛𝐴), 1))
4837, 43, 47cbvmpt 4077 . . . . . . 7 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1)) = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (𝑚𝑚 / 𝑛𝐴), 1))
4936, 48eqtri 2186 . . . . . 6 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (𝑚𝑚 / 𝑛𝐴), 1))
508adantr 274 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ∀𝑚 ∈ ℙ 𝑚 / 𝑛𝐴 ∈ ℕ0)
51 simpr 109 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
5217adantr 274 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → 𝑀 ∈ (ℤ𝑁))
5349, 50, 24, 51, 9, 52pcmpt2 12274 . . . . 5 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0))
5435, 53breqtrrd 4010 . . . 4 ((𝜑𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))))
5554ralrimiva 2539 . . 3 (𝜑 → ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))))
5636, 1pcmptcl 12272 . . . . . . . 8 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
5756simprd 113 . . . . . . 7 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
58 eluznn 9538 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ)
5923, 17, 58syl2anc 409 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
6057, 59ffvelrnd 5621 . . . . . 6 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ)
6160nnzd 9312 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℤ)
6257, 23ffvelrnd 5621 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℕ)
63 znq 9562 . . . . 5 (((seq1( · , 𝐹)‘𝑀) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑁) ∈ ℕ) → ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ)
6461, 62, 63syl2anc 409 . . . 4 (𝜑 → ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ)
65 pcz 12263 . . . 4 (((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ → (((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)))))
6664, 65syl 14 . . 3 (𝜑 → (((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)))))
6755, 66mpbird 166 . 2 (𝜑 → ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ)
6862nnzd 9312 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℤ)
6962nnne0d 8902 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑁) ≠ 0)
70 dvdsval2 11730 . . 3 (((seq1( · , 𝐹)‘𝑁) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑁) ≠ 0 ∧ (seq1( · , 𝐹)‘𝑀) ∈ ℤ) → ((seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀) ↔ ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ))
7168, 69, 61, 70syl3anc 1228 . 2 (𝜑 → ((seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀) ↔ ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ))
7267, 71mpbird 166 1 (𝜑 → (seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  DECID wdc 824   = wceq 1343  wcel 2136  wne 2336  wral 2444  csb 3045  ifcif 3520   class class class wbr 3982  cmpt 4043  wf 5184  cfv 5188  (class class class)co 5842  0cc0 7753  1c1 7754   · cmul 7758  cle 7934   / cdiv 8568  cn 8857  0cn0 9114  cz 9191  cuz 9466  cq 9557  seqcseq 10380  cexp 10454  cdvds 11727  cprime 12039   pCnt cpc 12216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-2o 6385  df-er 6501  df-en 6707  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-xnn0 9178  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876  df-prm 12040  df-pc 12217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator