| Step | Hyp | Ref
| Expression |
| 1 | | pcmpt.2 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈
ℕ0) |
| 2 | | nfv 1542 |
. . . . . . . . . 10
⊢
Ⅎ𝑚 𝐴 ∈
ℕ0 |
| 3 | | nfcsb1v 3117 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛⦋𝑚 / 𝑛⦌𝐴 |
| 4 | 3 | nfel1 2350 |
. . . . . . . . . 10
⊢
Ⅎ𝑛⦋𝑚 / 𝑛⦌𝐴 ∈ ℕ0 |
| 5 | | csbeq1a 3093 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑛⦌𝐴) |
| 6 | 5 | eleq1d 2265 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝐴 ∈ ℕ0 ↔
⦋𝑚 / 𝑛⦌𝐴 ∈
ℕ0)) |
| 7 | 2, 4, 6 | cbvralw 2723 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
ℙ 𝐴 ∈
ℕ0 ↔ ∀𝑚 ∈ ℙ ⦋𝑚 / 𝑛⦌𝐴 ∈
ℕ0) |
| 8 | 1, 7 | sylib 122 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑚 ∈ ℙ ⦋𝑚 / 𝑛⦌𝐴 ∈
ℕ0) |
| 9 | | csbeq1 3087 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑝 → ⦋𝑚 / 𝑛⦌𝐴 = ⦋𝑝 / 𝑛⦌𝐴) |
| 10 | 9 | eleq1d 2265 |
. . . . . . . . 9
⊢ (𝑚 = 𝑝 → (⦋𝑚 / 𝑛⦌𝐴 ∈ ℕ0 ↔
⦋𝑝 / 𝑛⦌𝐴 ∈
ℕ0)) |
| 11 | 10 | rspcv 2864 |
. . . . . . . 8
⊢ (𝑝 ∈ ℙ →
(∀𝑚 ∈ ℙ
⦋𝑚 / 𝑛⦌𝐴 ∈ ℕ0 →
⦋𝑝 / 𝑛⦌𝐴 ∈
ℕ0)) |
| 12 | 8, 11 | mpan9 281 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → ⦋𝑝 / 𝑛⦌𝐴 ∈
ℕ0) |
| 13 | 12 | nn0ge0d 9305 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → 0 ≤
⦋𝑝 / 𝑛⦌𝐴) |
| 14 | | 0le0 9079 |
. . . . . . 7
⊢ 0 ≤
0 |
| 15 | 14 | a1i 9 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → 0 ≤
0) |
| 16 | | prmz 12279 |
. . . . . . . 8
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℤ) |
| 17 | | pcmptdvds.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑁)) |
| 18 | | eluzelz 9610 |
. . . . . . . . . 10
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → 𝑀 ∈ ℤ) |
| 19 | 17, 18 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 20 | 19 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → 𝑀 ∈ ℤ) |
| 21 | | zdcle 9402 |
. . . . . . . 8
⊢ ((𝑝 ∈ ℤ ∧ 𝑀 ∈ ℤ) →
DECID 𝑝 ≤
𝑀) |
| 22 | 16, 20, 21 | syl2an2 594 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → DECID
𝑝 ≤ 𝑀) |
| 23 | | pcmpt.3 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 24 | 23 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℕ) |
| 25 | 24 | nnzd 9447 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℤ) |
| 26 | | zdcle 9402 |
. . . . . . . . 9
⊢ ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑝 ≤
𝑁) |
| 27 | 16, 25, 26 | syl2an2 594 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → DECID
𝑝 ≤ 𝑁) |
| 28 | | dcn 843 |
. . . . . . . 8
⊢
(DECID 𝑝 ≤ 𝑁 → DECID ¬ 𝑝 ≤ 𝑁) |
| 29 | 27, 28 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → DECID
¬ 𝑝 ≤ 𝑁) |
| 30 | | dcan2 936 |
. . . . . . 7
⊢
(DECID 𝑝 ≤ 𝑀 → (DECID ¬ 𝑝 ≤ 𝑁 → DECID (𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁))) |
| 31 | 22, 29, 30 | sylc 62 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → DECID
(𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁)) |
| 32 | | breq2 4037 |
. . . . . . 7
⊢
(⦋𝑝 /
𝑛⦌𝐴 = if((𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁), ⦋𝑝 / 𝑛⦌𝐴, 0) → (0 ≤ ⦋𝑝 / 𝑛⦌𝐴 ↔ 0 ≤ if((𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁), ⦋𝑝 / 𝑛⦌𝐴, 0))) |
| 33 | | breq2 4037 |
. . . . . . 7
⊢ (0 =
if((𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁), ⦋𝑝 / 𝑛⦌𝐴, 0) → (0 ≤ 0 ↔ 0 ≤
if((𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁), ⦋𝑝 / 𝑛⦌𝐴, 0))) |
| 34 | 32, 33 | ifbothdc 3594 |
. . . . . 6
⊢ ((0 ≤
⦋𝑝 / 𝑛⦌𝐴 ∧ 0 ≤ 0 ∧ DECID
(𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁)) → 0 ≤ if((𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁), ⦋𝑝 / 𝑛⦌𝐴, 0)) |
| 35 | 13, 15, 31, 34 | syl3anc 1249 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → 0 ≤ if((𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁), ⦋𝑝 / 𝑛⦌𝐴, 0)) |
| 36 | | pcmpt.1 |
. . . . . . 7
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) |
| 37 | | nfcv 2339 |
. . . . . . . 8
⊢
Ⅎ𝑚if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) |
| 38 | | nfv 1542 |
. . . . . . . . 9
⊢
Ⅎ𝑛 𝑚 ∈ ℙ |
| 39 | | nfcv 2339 |
. . . . . . . . . 10
⊢
Ⅎ𝑛𝑚 |
| 40 | | nfcv 2339 |
. . . . . . . . . 10
⊢
Ⅎ𝑛↑ |
| 41 | 39, 40, 3 | nfov 5952 |
. . . . . . . . 9
⊢
Ⅎ𝑛(𝑚↑⦋𝑚 / 𝑛⦌𝐴) |
| 42 | | nfcv 2339 |
. . . . . . . . 9
⊢
Ⅎ𝑛1 |
| 43 | 38, 41, 42 | nfif 3589 |
. . . . . . . 8
⊢
Ⅎ𝑛if(𝑚 ∈ ℙ, (𝑚↑⦋𝑚 / 𝑛⦌𝐴), 1) |
| 44 | | eleq1w 2257 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑛 ∈ ℙ ↔ 𝑚 ∈ ℙ)) |
| 45 | | id 19 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → 𝑛 = 𝑚) |
| 46 | 45, 5 | oveq12d 5940 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑛↑𝐴) = (𝑚↑⦋𝑚 / 𝑛⦌𝐴)) |
| 47 | 44, 46 | ifbieq1d 3583 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) = if(𝑚 ∈ ℙ, (𝑚↑⦋𝑚 / 𝑛⦌𝐴), 1)) |
| 48 | 37, 43, 47 | cbvmpt 4128 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (𝑚↑⦋𝑚 / 𝑛⦌𝐴), 1)) |
| 49 | 36, 48 | eqtri 2217 |
. . . . . 6
⊢ 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (𝑚↑⦋𝑚 / 𝑛⦌𝐴), 1)) |
| 50 | 8 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → ∀𝑚 ∈ ℙ
⦋𝑚 / 𝑛⦌𝐴 ∈
ℕ0) |
| 51 | | simpr 110 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ) |
| 52 | 17 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → 𝑀 ∈ (ℤ≥‘𝑁)) |
| 53 | 49, 50, 24, 51, 9, 52 | pcmpt2 12513 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁), ⦋𝑝 / 𝑛⦌𝐴, 0)) |
| 54 | 35, 53 | breqtrrd 4061 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)))) |
| 55 | 54 | ralrimiva 2570 |
. . 3
⊢ (𝜑 → ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)))) |
| 56 | 36, 1 | pcmptcl 12511 |
. . . . . . . 8
⊢ (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( ·
, 𝐹):ℕ⟶ℕ)) |
| 57 | 56 | simprd 114 |
. . . . . . 7
⊢ (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ) |
| 58 | | eluznn 9674 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
| 59 | 23, 17, 58 | syl2anc 411 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 60 | 57, 59 | ffvelcdmd 5698 |
. . . . . 6
⊢ (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ) |
| 61 | 60 | nnzd 9447 |
. . . . 5
⊢ (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℤ) |
| 62 | 57, 23 | ffvelcdmd 5698 |
. . . . 5
⊢ (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℕ) |
| 63 | | znq 9698 |
. . . . 5
⊢ (((seq1(
· , 𝐹)‘𝑀) ∈ ℤ ∧ (seq1(
· , 𝐹)‘𝑁) ∈ ℕ) → ((seq1(
· , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ) |
| 64 | 61, 62, 63 | syl2anc 411 |
. . . 4
⊢ (𝜑 → ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ) |
| 65 | | pcz 12501 |
. . . 4
⊢ (((seq1(
· , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ → (((seq1( · ,
𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))))) |
| 66 | 64, 65 | syl 14 |
. . 3
⊢ (𝜑 → (((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))))) |
| 67 | 55, 66 | mpbird 167 |
. 2
⊢ (𝜑 → ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ) |
| 68 | 62 | nnzd 9447 |
. . 3
⊢ (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℤ) |
| 69 | 62 | nnne0d 9035 |
. . 3
⊢ (𝜑 → (seq1( · , 𝐹)‘𝑁) ≠ 0) |
| 70 | | dvdsval2 11955 |
. . 3
⊢ (((seq1(
· , 𝐹)‘𝑁) ∈ ℤ ∧ (seq1(
· , 𝐹)‘𝑁) ≠ 0 ∧ (seq1( · ,
𝐹)‘𝑀) ∈ ℤ) → ((seq1( · ,
𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀) ↔ ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ)) |
| 71 | 68, 69, 61, 70 | syl3anc 1249 |
. 2
⊢ (𝜑 → ((seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀) ↔ ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ)) |
| 72 | 67, 71 | mpbird 167 |
1
⊢ (𝜑 → (seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀)) |