| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ssralv | GIF version | ||
| Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.) | 
| Ref | Expression | 
|---|---|
| ssralv | ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssel 3177 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | imim1d 75 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑))) | 
| 3 | 2 | ralimdv2 2567 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: iinss1 3928 poss 4333 sess2 4373 trssord 4415 funco 5298 funimaexglem 5341 isores3 5862 isoini2 5866 smores 6350 smores2 6352 tfrlem5 6372 resixp 6792 ac6sfi 6959 difinfinf 7167 peano5nnnn 7959 peano5nni 8993 caucvgre 11146 rexanuz 11153 cau3lem 11279 isumclim3 11588 fsumiun 11642 pcfac 12519 ctinf 12647 strsetsid 12711 imasaddfnlemg 12957 tgcn 14444 tgcnp 14445 cnss2 14463 cncnp 14466 sslm 14483 metrest 14742 rescncf 14817 suplociccex 14861 limcresi 14902 nninfsellemeq 15658 | 
| Copyright terms: Public domain | W3C validator |