| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssralv | GIF version | ||
| Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.) |
| Ref | Expression |
|---|---|
| ssralv | ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3186 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | imim1d 75 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑))) |
| 3 | 2 | ralimdv2 2575 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ∀wral 2483 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-ral 2488 df-in 3171 df-ss 3178 |
| This theorem is referenced by: iinss1 3938 poss 4343 sess2 4383 trssord 4425 funco 5308 funimaexglem 5351 isores3 5874 isoini2 5878 smores 6368 smores2 6370 tfrlem5 6390 resixp 6810 ac6sfi 6977 difinfinf 7185 peano5nnnn 7987 peano5nni 9021 caucvgre 11211 rexanuz 11218 cau3lem 11344 isumclim3 11653 fsumiun 11707 pcfac 12592 ctinf 12720 strsetsid 12784 imasaddfnlemg 13064 tgcn 14598 tgcnp 14599 cnss2 14617 cncnp 14620 sslm 14637 metrest 14896 rescncf 14971 suplociccex 15015 limcresi 15056 nninfsellemeq 15815 |
| Copyright terms: Public domain | W3C validator |