Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssralv | GIF version |
Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.) |
Ref | Expression |
---|---|
ssralv | ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3141 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | imim1d 75 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑))) |
3 | 2 | ralimdv2 2540 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ∀wral 2448 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-ral 2453 df-in 3127 df-ss 3134 |
This theorem is referenced by: iinss1 3885 poss 4283 sess2 4323 trssord 4365 funco 5238 funimaexglem 5281 isores3 5794 isoini2 5798 smores 6271 smores2 6273 tfrlem5 6293 resixp 6711 ac6sfi 6876 difinfinf 7078 peano5nnnn 7854 peano5nni 8881 caucvgre 10945 rexanuz 10952 cau3lem 11078 isumclim3 11386 fsumiun 11440 pcfac 12302 ctinf 12385 strsetsid 12449 tgcn 13002 tgcnp 13003 cnss2 13021 cncnp 13024 sslm 13041 metrest 13300 rescncf 13362 suplociccex 13397 limcresi 13429 nninfsellemeq 14047 |
Copyright terms: Public domain | W3C validator |