| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssralv | GIF version | ||
| Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.) |
| Ref | Expression |
|---|---|
| ssralv | ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3218 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | imim1d 75 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑))) |
| 3 | 2 | ralimdv2 2600 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-ral 2513 df-in 3203 df-ss 3210 |
| This theorem is referenced by: iinss1 3976 poss 4388 sess2 4428 trssord 4470 funco 5357 funimaexglem 5403 isores3 5938 isoini2 5942 smores 6436 smores2 6438 tfrlem5 6458 resixp 6878 ac6sfi 7056 difinfinf 7264 peano5nnnn 8075 peano5nni 9109 caucvgre 11487 rexanuz 11494 cau3lem 11620 isumclim3 11929 fsumiun 11983 pcfac 12868 ctinf 12996 strsetsid 13060 imasaddfnlemg 13342 tgcn 14876 tgcnp 14877 cnss2 14895 cncnp 14898 sslm 14915 metrest 15174 rescncf 15249 suplociccex 15293 limcresi 15334 nninfsellemeq 16339 |
| Copyright terms: Public domain | W3C validator |