ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssralv GIF version

Theorem ssralv 3247
Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.)
Assertion
Ref Expression
ssralv (𝐴𝐵 → (∀𝑥𝐵 𝜑 → ∀𝑥𝐴 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssralv
StepHypRef Expression
1 ssel 3177 . . 3 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21imim1d 75 . 2 (𝐴𝐵 → ((𝑥𝐵𝜑) → (𝑥𝐴𝜑)))
32ralimdv2 2567 1 (𝐴𝐵 → (∀𝑥𝐵 𝜑 → ∀𝑥𝐴 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wral 2475  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-in 3163  df-ss 3170
This theorem is referenced by:  iinss1  3928  poss  4333  sess2  4373  trssord  4415  funco  5298  funimaexglem  5341  isores3  5862  isoini2  5866  smores  6350  smores2  6352  tfrlem5  6372  resixp  6792  ac6sfi  6959  difinfinf  7167  peano5nnnn  7959  peano5nni  8993  caucvgre  11146  rexanuz  11153  cau3lem  11279  isumclim3  11588  fsumiun  11642  pcfac  12519  ctinf  12647  strsetsid  12711  imasaddfnlemg  12957  tgcn  14444  tgcnp  14445  cnss2  14463  cncnp  14466  sslm  14483  metrest  14742  rescncf  14817  suplociccex  14861  limcresi  14902  nninfsellemeq  15658
  Copyright terms: Public domain W3C validator