| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssralv | GIF version | ||
| Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.) |
| Ref | Expression |
|---|---|
| ssralv | ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3178 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | imim1d 75 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑))) |
| 3 | 2 | ralimdv2 2567 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-in 3163 df-ss 3170 |
| This theorem is referenced by: iinss1 3929 poss 4334 sess2 4374 trssord 4416 funco 5299 funimaexglem 5342 isores3 5865 isoini2 5869 smores 6359 smores2 6361 tfrlem5 6381 resixp 6801 ac6sfi 6968 difinfinf 7176 peano5nnnn 7976 peano5nni 9010 caucvgre 11163 rexanuz 11170 cau3lem 11296 isumclim3 11605 fsumiun 11659 pcfac 12544 ctinf 12672 strsetsid 12736 imasaddfnlemg 13016 tgcn 14528 tgcnp 14529 cnss2 14547 cncnp 14550 sslm 14567 metrest 14826 rescncf 14901 suplociccex 14945 limcresi 14986 nninfsellemeq 15745 |
| Copyright terms: Public domain | W3C validator |