Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssralv | GIF version |
Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.) |
Ref | Expression |
---|---|
ssralv | ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3141 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | imim1d 75 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑))) |
3 | 2 | ralimdv2 2540 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ∀wral 2448 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-ral 2453 df-in 3127 df-ss 3134 |
This theorem is referenced by: iinss1 3883 poss 4281 sess2 4321 trssord 4363 funco 5236 funimaexglem 5279 isores3 5791 isoini2 5795 smores 6268 smores2 6270 tfrlem5 6290 resixp 6707 ac6sfi 6872 difinfinf 7074 peano5nnnn 7841 peano5nni 8868 caucvgre 10932 rexanuz 10939 cau3lem 11065 isumclim3 11373 fsumiun 11427 pcfac 12289 ctinf 12372 strsetsid 12436 tgcn 12961 tgcnp 12962 cnss2 12980 cncnp 12983 sslm 13000 metrest 13259 rescncf 13321 suplociccex 13356 limcresi 13388 nninfsellemeq 14007 |
Copyright terms: Public domain | W3C validator |