| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssralv | GIF version | ||
| Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.) |
| Ref | Expression |
|---|---|
| ssralv | ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3186 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | imim1d 75 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑))) |
| 3 | 2 | ralimdv2 2575 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ∀wral 2483 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-ral 2488 df-in 3171 df-ss 3178 |
| This theorem is referenced by: iinss1 3938 poss 4344 sess2 4384 trssord 4426 funco 5310 funimaexglem 5356 isores3 5883 isoini2 5887 smores 6377 smores2 6379 tfrlem5 6399 resixp 6819 ac6sfi 6994 difinfinf 7202 peano5nnnn 8004 peano5nni 9038 caucvgre 11234 rexanuz 11241 cau3lem 11367 isumclim3 11676 fsumiun 11730 pcfac 12615 ctinf 12743 strsetsid 12807 imasaddfnlemg 13088 tgcn 14622 tgcnp 14623 cnss2 14641 cncnp 14644 sslm 14661 metrest 14920 rescncf 14995 suplociccex 15039 limcresi 15080 nninfsellemeq 15884 |
| Copyright terms: Public domain | W3C validator |