![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imp32 | GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
imp32 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | impd 254 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem is referenced by: imp42 354 impr 379 anasss 399 an13s 567 3expb 1204 reuss2 3417 reupick 3421 po2nr 4311 fvmptt 5609 fliftfund 5800 f1ocnv2d 6077 addclpi 7328 addnidpig 7337 mulnqprl 7569 mulnqpru 7570 ltsubrp 9692 ltaddrp 9693 divgcdcoprm0 12103 infpnlem1 12359 innei 13748 tgcnp 13794 isxmetd 13932 |
Copyright terms: Public domain | W3C validator |