![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imp32 | GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
imp32 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | impd 254 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem is referenced by: imp42 354 impr 379 anasss 399 an13s 567 3expb 1206 reuss2 3440 reupick 3444 po2nr 4341 fvmptt 5650 fliftfund 5841 f1ocnv2d 6124 addclpi 7389 addnidpig 7398 mulnqprl 7630 mulnqpru 7631 ltsubrp 9759 ltaddrp 9760 divgcdcoprm0 12242 infpnlem1 12500 imasgrp2 13183 imasrng 13455 imasring 13563 innei 14342 tgcnp 14388 isxmetd 14526 2lgslem1a1 15243 |
Copyright terms: Public domain | W3C validator |