| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imp32 | GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| imp32 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | impd 254 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem is referenced by: imp42 354 impr 379 anasss 399 an13s 567 3expb 1206 reuss2 3444 reupick 3448 po2nr 4345 fvmptt 5656 fliftfund 5847 f1ocnv2d 6131 addclpi 7413 addnidpig 7422 mulnqprl 7654 mulnqpru 7655 ltsubrp 9784 ltaddrp 9785 divgcdcoprm0 12296 infpnlem1 12555 imasmnd2 13156 imasgrp2 13318 imasrng 13590 imasring 13698 innei 14507 tgcnp 14553 isxmetd 14691 2lgslem1a1 15435 |
| Copyright terms: Public domain | W3C validator |