| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imp32 | GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| imp32 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | impd 254 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem is referenced by: imp42 354 impr 379 anasss 399 an13s 567 3expb 1206 reuss2 3444 reupick 3448 po2nr 4345 fvmptt 5656 fliftfund 5847 f1ocnv2d 6131 addclpi 7411 addnidpig 7420 mulnqprl 7652 mulnqpru 7653 ltsubrp 9782 ltaddrp 9783 divgcdcoprm0 12294 infpnlem1 12553 imasmnd2 13154 imasgrp2 13316 imasrng 13588 imasring 13696 innei 14483 tgcnp 14529 isxmetd 14667 2lgslem1a1 15411 |
| Copyright terms: Public domain | W3C validator |