ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp32 GIF version

Theorem imp32 257
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp3.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
imp32 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)

Proof of Theorem imp32
StepHypRef Expression
1 imp3.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21impd 254 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
32imp 124 1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem is referenced by:  imp42  354  impr  379  anasss  399  an13s  567  3expb  1206  reuss2  3439  reupick  3443  po2nr  4340  fvmptt  5649  fliftfund  5840  f1ocnv2d  6122  addclpi  7387  addnidpig  7396  mulnqprl  7628  mulnqpru  7629  ltsubrp  9756  ltaddrp  9757  divgcdcoprm0  12239  infpnlem1  12497  imasgrp2  13180  imasrng  13452  imasring  13560  innei  14331  tgcnp  14377  isxmetd  14515
  Copyright terms: Public domain W3C validator