ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp32 GIF version

Theorem imp32 257
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp3.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
imp32 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)

Proof of Theorem imp32
StepHypRef Expression
1 imp3.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21impd 254 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
32imp 124 1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem is referenced by:  imp42  354  impr  379  anasss  399  an13s  567  3expb  1206  reuss2  3452  reupick  3456  po2nr  4355  fvmptt  5670  fliftfund  5865  f1ocnv2d  6149  addclpi  7439  addnidpig  7448  mulnqprl  7680  mulnqpru  7681  ltsubrp  9811  ltaddrp  9812  divgcdcoprm0  12365  infpnlem1  12624  imasmnd2  13226  imasgrp2  13388  imasrng  13660  imasring  13768  innei  14577  tgcnp  14623  isxmetd  14761  2lgslem1a1  15505
  Copyright terms: Public domain W3C validator