Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imp32 | GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
imp32 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | impd 252 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
3 | 2 | imp 123 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem is referenced by: imp42 352 impr 377 anasss 397 an13s 557 3expb 1194 reuss2 3402 reupick 3406 po2nr 4287 fvmptt 5577 fliftfund 5765 f1ocnv2d 6042 addclpi 7268 addnidpig 7277 mulnqprl 7509 mulnqpru 7510 ltsubrp 9626 ltaddrp 9627 divgcdcoprm0 12033 infpnlem1 12289 innei 12803 tgcnp 12849 isxmetd 12987 |
Copyright terms: Public domain | W3C validator |