| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imp32 | GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| imp32 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | impd 254 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem is referenced by: imp42 354 impr 379 anasss 399 an13s 567 3expb 1207 reuss2 3457 reupick 3461 po2nr 4364 fvmptt 5684 fliftfund 5879 f1ocnv2d 6163 addclpi 7460 addnidpig 7469 mulnqprl 7701 mulnqpru 7702 ltsubrp 9832 ltaddrp 9833 divgcdcoprm0 12498 infpnlem1 12757 imasmnd2 13359 imasgrp2 13521 imasrng 13793 imasring 13901 innei 14710 tgcnp 14756 isxmetd 14894 2lgslem1a1 15638 |
| Copyright terms: Public domain | W3C validator |