ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp32 GIF version

Theorem imp32 257
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp3.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
imp32 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)

Proof of Theorem imp32
StepHypRef Expression
1 imp3.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21impd 254 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
32imp 124 1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem is referenced by:  imp42  354  impr  379  anasss  399  an13s  567  3expb  1207  reuss2  3457  reupick  3461  po2nr  4364  fvmptt  5684  fliftfund  5879  f1ocnv2d  6163  addclpi  7460  addnidpig  7469  mulnqprl  7701  mulnqpru  7702  ltsubrp  9832  ltaddrp  9833  divgcdcoprm0  12498  infpnlem1  12757  imasmnd2  13359  imasgrp2  13521  imasrng  13793  imasring  13901  innei  14710  tgcnp  14756  isxmetd  14894  2lgslem1a1  15638
  Copyright terms: Public domain W3C validator