| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imp32 | GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| imp32 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | impd 254 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem is referenced by: imp42 354 impr 379 anasss 399 an13s 567 3expb 1206 reuss2 3452 reupick 3456 po2nr 4355 fvmptt 5670 fliftfund 5865 f1ocnv2d 6149 addclpi 7439 addnidpig 7448 mulnqprl 7680 mulnqpru 7681 ltsubrp 9811 ltaddrp 9812 divgcdcoprm0 12394 infpnlem1 12653 imasmnd2 13255 imasgrp2 13417 imasrng 13689 imasring 13797 innei 14606 tgcnp 14652 isxmetd 14790 2lgslem1a1 15534 |
| Copyright terms: Public domain | W3C validator |