| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imp32 | GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| imp32 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | impd 254 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem is referenced by: imp42 354 impr 379 anasss 399 an13s 567 3expb 1228 reuss2 3484 reupick 3488 po2nr 4399 fvmptt 5725 fliftfund 5920 f1ocnv2d 6208 addclpi 7510 addnidpig 7519 mulnqprl 7751 mulnqpru 7752 ltsubrp 9882 ltaddrp 9883 pfxccat3 11261 divgcdcoprm0 12618 infpnlem1 12877 imasmnd2 13480 imasgrp2 13642 imasrng 13914 imasring 14022 innei 14831 tgcnp 14877 isxmetd 15015 2lgslem1a1 15759 |
| Copyright terms: Public domain | W3C validator |