![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addclpi | GIF version |
Description: Closure of addition of positive integers. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
addclpi | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) ∈ N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addpiord 7072 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) | |
2 | pinn 7065 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
3 | pinn 7065 | . . . . 5 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
4 | nnacl 6330 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω) | |
5 | 3, 4 | sylan2 282 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) ∈ ω) |
6 | elni2 7070 | . . . . 5 ⊢ (𝐵 ∈ N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) | |
7 | nnaordi 6358 | . . . . . . . 8 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +o ∅) ∈ (𝐴 +o 𝐵))) | |
8 | ne0i 3335 | . . . . . . . 8 ⊢ ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) → (𝐴 +o 𝐵) ≠ ∅) | |
9 | 7, 8 | syl6 33 | . . . . . . 7 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +o 𝐵) ≠ ∅)) |
10 | 9 | expcom 115 | . . . . . 6 ⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (∅ ∈ 𝐵 → (𝐴 +o 𝐵) ≠ ∅))) |
11 | 10 | imp32 255 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) → (𝐴 +o 𝐵) ≠ ∅) |
12 | 6, 11 | sylan2b 283 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) ≠ ∅) |
13 | elni 7064 | . . . 4 ⊢ ((𝐴 +o 𝐵) ∈ N ↔ ((𝐴 +o 𝐵) ∈ ω ∧ (𝐴 +o 𝐵) ≠ ∅)) | |
14 | 5, 12, 13 | sylanbrc 411 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) ∈ N) |
15 | 2, 14 | sylan 279 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) ∈ N) |
16 | 1, 15 | eqeltrd 2191 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) ∈ N) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 1463 ≠ wne 2282 ∅c0 3329 ωcom 4464 (class class class)co 5728 +o coa 6264 Ncnpi 7028 +N cpli 7029 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-iinf 4462 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-id 4175 df-iord 4248 df-on 4250 df-suc 4253 df-iom 4465 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-recs 6156 df-irdg 6221 df-oadd 6271 df-ni 7060 df-pli 7061 |
This theorem is referenced by: addasspig 7086 distrpig 7089 ltapig 7094 1lt2pi 7096 indpi 7098 addcmpblnq 7123 addpipqqslem 7125 addclnq 7131 addassnqg 7138 distrnqg 7143 ltanqg 7156 1lt2nq 7162 ltexnqq 7164 archnqq 7173 prarloclemarch2 7175 nqnq0a 7210 nntopi 7629 |
Copyright terms: Public domain | W3C validator |