| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addclpi | GIF version | ||
| Description: Closure of addition of positive integers. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| addclpi | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) ∈ N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addpiord 7471 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) | |
| 2 | pinn 7464 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 3 | pinn 7464 | . . . . 5 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
| 4 | nnacl 6596 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω) | |
| 5 | 3, 4 | sylan2 286 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) ∈ ω) |
| 6 | elni2 7469 | . . . . 5 ⊢ (𝐵 ∈ N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) | |
| 7 | nnaordi 6624 | . . . . . . . 8 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +o ∅) ∈ (𝐴 +o 𝐵))) | |
| 8 | ne0i 3478 | . . . . . . . 8 ⊢ ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) → (𝐴 +o 𝐵) ≠ ∅) | |
| 9 | 7, 8 | syl6 33 | . . . . . . 7 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +o 𝐵) ≠ ∅)) |
| 10 | 9 | expcom 116 | . . . . . 6 ⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (∅ ∈ 𝐵 → (𝐴 +o 𝐵) ≠ ∅))) |
| 11 | 10 | imp32 257 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) → (𝐴 +o 𝐵) ≠ ∅) |
| 12 | 6, 11 | sylan2b 287 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) ≠ ∅) |
| 13 | elni 7463 | . . . 4 ⊢ ((𝐴 +o 𝐵) ∈ N ↔ ((𝐴 +o 𝐵) ∈ ω ∧ (𝐴 +o 𝐵) ≠ ∅)) | |
| 14 | 5, 12, 13 | sylanbrc 417 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) ∈ N) |
| 15 | 2, 14 | sylan 283 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) ∈ N) |
| 16 | 1, 15 | eqeltrd 2286 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) ∈ N) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2180 ≠ wne 2380 ∅c0 3471 ωcom 4659 (class class class)co 5974 +o coa 6529 Ncnpi 7427 +N cpli 7428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-oadd 6536 df-ni 7459 df-pli 7460 |
| This theorem is referenced by: addasspig 7485 distrpig 7488 ltapig 7493 1lt2pi 7495 indpi 7497 addcmpblnq 7522 addpipqqslem 7524 addclnq 7530 addassnqg 7537 distrnqg 7542 ltanqg 7555 1lt2nq 7561 ltexnqq 7563 archnqq 7572 prarloclemarch2 7574 nqnq0a 7609 nntopi 8049 |
| Copyright terms: Public domain | W3C validator |