ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgcnp GIF version

Theorem tgcnp 13376
Description: The "continuous at a point" predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
tgcn.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
tgcn.3 (𝜑𝐾 = (topGen‘𝐵))
tgcn.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
tgcnp.5 (𝜑𝑃𝑋)
Assertion
Ref Expression
tgcnp (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem tgcnp
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tgcn.1 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 tgcn.4 . . . 4 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 tgcnp.5 . . . 4 (𝜑𝑃𝑋)
4 iscnp 13366 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
51, 2, 3, 4syl3anc 1238 . . 3 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
6 tgcn.3 . . . . . . . . 9 (𝜑𝐾 = (topGen‘𝐵))
7 topontop 13179 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
82, 7syl 14 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
96, 8eqeltrrd 2255 . . . . . . . 8 (𝜑 → (topGen‘𝐵) ∈ Top)
10 tgclb 13232 . . . . . . . 8 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
119, 10sylibr 134 . . . . . . 7 (𝜑𝐵 ∈ TopBases)
12 bastg 13228 . . . . . . 7 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
1311, 12syl 14 . . . . . 6 (𝜑𝐵 ⊆ (topGen‘𝐵))
1413, 6sseqtrrd 3194 . . . . 5 (𝜑𝐵𝐾)
15 ssralv 3219 . . . . 5 (𝐵𝐾 → (∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))))
1614, 15syl 14 . . . 4 (𝜑 → (∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))))
1716anim2d 337 . . 3 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) → (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
185, 17sylbid 150 . 2 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
196eleq2d 2247 . . . . . . 7 (𝜑 → (𝑧𝐾𝑧 ∈ (topGen‘𝐵)))
2019biimpa 296 . . . . . 6 ((𝜑𝑧𝐾) → 𝑧 ∈ (topGen‘𝐵))
21 tg2 13227 . . . . . . . . 9 ((𝑧 ∈ (topGen‘𝐵) ∧ (𝐹𝑃) ∈ 𝑧) → ∃𝑦𝐵 ((𝐹𝑃) ∈ 𝑦𝑦𝑧))
22 r19.29 2614 . . . . . . . . . . 11 ((∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ∃𝑦𝐵 ((𝐹𝑃) ∈ 𝑦𝑦𝑧)) → ∃𝑦𝐵 (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ((𝐹𝑃) ∈ 𝑦𝑦𝑧)))
23 sstr 3163 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑥) ⊆ 𝑦𝑦𝑧) → (𝐹𝑥) ⊆ 𝑧)
2423expcom 116 . . . . . . . . . . . . . . . . 17 (𝑦𝑧 → ((𝐹𝑥) ⊆ 𝑦 → (𝐹𝑥) ⊆ 𝑧))
2524anim2d 337 . . . . . . . . . . . . . . . 16 (𝑦𝑧 → ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
2625reximdv 2578 . . . . . . . . . . . . . . 15 (𝑦𝑧 → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
2726com12 30 . . . . . . . . . . . . . 14 (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑦𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
2827imim2i 12 . . . . . . . . . . . . 13 (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ((𝐹𝑃) ∈ 𝑦 → (𝑦𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
2928imp32 257 . . . . . . . . . . . 12 ((((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ((𝐹𝑃) ∈ 𝑦𝑦𝑧)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))
3029rexlimivw 2590 . . . . . . . . . . 11 (∃𝑦𝐵 (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ((𝐹𝑃) ∈ 𝑦𝑦𝑧)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))
3122, 30syl 14 . . . . . . . . . 10 ((∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ∃𝑦𝐵 ((𝐹𝑃) ∈ 𝑦𝑦𝑧)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))
3231expcom 116 . . . . . . . . 9 (∃𝑦𝐵 ((𝐹𝑃) ∈ 𝑦𝑦𝑧) → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
3321, 32syl 14 . . . . . . . 8 ((𝑧 ∈ (topGen‘𝐵) ∧ (𝐹𝑃) ∈ 𝑧) → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
3433ex 115 . . . . . . 7 (𝑧 ∈ (topGen‘𝐵) → ((𝐹𝑃) ∈ 𝑧 → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
3534com23 78 . . . . . 6 (𝑧 ∈ (topGen‘𝐵) → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
3620, 35syl 14 . . . . 5 ((𝜑𝑧𝐾) → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
3736ralrimdva 2557 . . . 4 (𝜑 → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∀𝑧𝐾 ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
3837anim2d 337 . . 3 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) → (𝐹:𝑋𝑌 ∧ ∀𝑧𝐾 ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))))
39 iscnp 13366 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧𝐾 ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))))
401, 2, 3, 39syl3anc 1238 . . 3 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧𝐾 ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))))
4138, 40sylibrd 169 . 2 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)))
4218, 41impbid 129 1 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  wrex 2456  wss 3129  cima 4626  wf 5208  cfv 5212  (class class class)co 5869  topGenctg 12651  Topctop 13162  TopOnctopon 13175  TopBasesctb 13207   CnP ccnp 13353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-map 6644  df-topgen 12657  df-top 13163  df-topon 13176  df-bases 13208  df-cnp 13356
This theorem is referenced by:  txcnp  13438  metcnp3  13678
  Copyright terms: Public domain W3C validator