Step | Hyp | Ref
| Expression |
1 | | tgcn.1 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
2 | | tgcn.4 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
3 | | tgcnp.5 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ 𝑋) |
4 | | iscnp 12993 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
5 | 1, 2, 3, 4 | syl3anc 1233 |
. . 3
⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
6 | | tgcn.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 = (topGen‘𝐵)) |
7 | | topontop 12806 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
8 | 2, 7 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Top) |
9 | 6, 8 | eqeltrrd 2248 |
. . . . . . . 8
⊢ (𝜑 → (topGen‘𝐵) ∈ Top) |
10 | | tgclb 12859 |
. . . . . . . 8
⊢ (𝐵 ∈ TopBases ↔
(topGen‘𝐵) ∈
Top) |
11 | 9, 10 | sylibr 133 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ TopBases) |
12 | | bastg 12855 |
. . . . . . 7
⊢ (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵)) |
13 | 11, 12 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ (topGen‘𝐵)) |
14 | 13, 6 | sseqtrrd 3186 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ 𝐾) |
15 | | ssralv 3211 |
. . . . 5
⊢ (𝐵 ⊆ 𝐾 → (∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)))) |
16 | 14, 15 | syl 14 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)))) |
17 | 16 | anim2d 335 |
. . 3
⊢ (𝜑 → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
18 | 5, 17 | sylbid 149 |
. 2
⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
19 | 6 | eleq2d 2240 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ 𝐾 ↔ 𝑧 ∈ (topGen‘𝐵))) |
20 | 19 | biimpa 294 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐾) → 𝑧 ∈ (topGen‘𝐵)) |
21 | | tg2 12854 |
. . . . . . . . 9
⊢ ((𝑧 ∈ (topGen‘𝐵) ∧ (𝐹‘𝑃) ∈ 𝑧) → ∃𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧)) |
22 | | r19.29 2607 |
. . . . . . . . . . 11
⊢
((∀𝑦 ∈
𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ∧ ∃𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧)) → ∃𝑦 ∈ 𝐵 (((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ∧ ((𝐹‘𝑃) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))) |
23 | | sstr 3155 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 “ 𝑥) ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑧) → (𝐹 “ 𝑥) ⊆ 𝑧) |
24 | 23 | expcom 115 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ⊆ 𝑧 → ((𝐹 “ 𝑥) ⊆ 𝑦 → (𝐹 “ 𝑥) ⊆ 𝑧)) |
25 | 24 | anim2d 335 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ⊆ 𝑧 → ((𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧))) |
26 | 25 | reximdv 2571 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ⊆ 𝑧 → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧))) |
27 | 26 | com12 30 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥 ∈
𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → (𝑦 ⊆ 𝑧 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧))) |
28 | 27 | imim2i 12 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ((𝐹‘𝑃) ∈ 𝑦 → (𝑦 ⊆ 𝑧 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧)))) |
29 | 28 | imp32 255 |
. . . . . . . . . . . 12
⊢ ((((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ∧ ((𝐹‘𝑃) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧)) |
30 | 29 | rexlimivw 2583 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝐵 (((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ∧ ((𝐹‘𝑃) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧)) |
31 | 22, 30 | syl 14 |
. . . . . . . . . 10
⊢
((∀𝑦 ∈
𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ∧ ∃𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧)) |
32 | 31 | expcom 115 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
𝐵 ((𝐹‘𝑃) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧) → (∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧))) |
33 | 21, 32 | syl 14 |
. . . . . . . 8
⊢ ((𝑧 ∈ (topGen‘𝐵) ∧ (𝐹‘𝑃) ∈ 𝑧) → (∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧))) |
34 | 33 | ex 114 |
. . . . . . 7
⊢ (𝑧 ∈ (topGen‘𝐵) → ((𝐹‘𝑃) ∈ 𝑧 → (∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧)))) |
35 | 34 | com23 78 |
. . . . . 6
⊢ (𝑧 ∈ (topGen‘𝐵) → (∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ((𝐹‘𝑃) ∈ 𝑧 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧)))) |
36 | 20, 35 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐾) → (∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ((𝐹‘𝑃) ∈ 𝑧 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧)))) |
37 | 36 | ralrimdva 2550 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ∀𝑧 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑧 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧)))) |
38 | 37 | anim2d 335 |
. . 3
⊢ (𝜑 → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑧 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑧 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧))))) |
39 | | iscnp 12993 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑧 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑧 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧))))) |
40 | 1, 2, 3, 39 | syl3anc 1233 |
. . 3
⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑧 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑧 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧))))) |
41 | 38, 40 | sylibrd 168 |
. 2
⊢ (𝜑 → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) |
42 | 18, 41 | impbid 128 |
1
⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |