ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgcnp GIF version

Theorem tgcnp 12305
Description: The "continuous at a point" predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
tgcn.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
tgcn.3 (𝜑𝐾 = (topGen‘𝐵))
tgcn.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
tgcnp.5 (𝜑𝑃𝑋)
Assertion
Ref Expression
tgcnp (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem tgcnp
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tgcn.1 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 tgcn.4 . . . 4 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 tgcnp.5 . . . 4 (𝜑𝑃𝑋)
4 iscnp 12295 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
51, 2, 3, 4syl3anc 1201 . . 3 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
6 tgcn.3 . . . . . . . . 9 (𝜑𝐾 = (topGen‘𝐵))
7 topontop 12108 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
82, 7syl 14 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
96, 8eqeltrrd 2195 . . . . . . . 8 (𝜑 → (topGen‘𝐵) ∈ Top)
10 tgclb 12161 . . . . . . . 8 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
119, 10sylibr 133 . . . . . . 7 (𝜑𝐵 ∈ TopBases)
12 bastg 12157 . . . . . . 7 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
1311, 12syl 14 . . . . . 6 (𝜑𝐵 ⊆ (topGen‘𝐵))
1413, 6sseqtrrd 3106 . . . . 5 (𝜑𝐵𝐾)
15 ssralv 3131 . . . . 5 (𝐵𝐾 → (∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))))
1614, 15syl 14 . . . 4 (𝜑 → (∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))))
1716anim2d 335 . . 3 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) → (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
185, 17sylbid 149 . 2 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
196eleq2d 2187 . . . . . . 7 (𝜑 → (𝑧𝐾𝑧 ∈ (topGen‘𝐵)))
2019biimpa 294 . . . . . 6 ((𝜑𝑧𝐾) → 𝑧 ∈ (topGen‘𝐵))
21 tg2 12156 . . . . . . . . 9 ((𝑧 ∈ (topGen‘𝐵) ∧ (𝐹𝑃) ∈ 𝑧) → ∃𝑦𝐵 ((𝐹𝑃) ∈ 𝑦𝑦𝑧))
22 r19.29 2546 . . . . . . . . . . 11 ((∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ∃𝑦𝐵 ((𝐹𝑃) ∈ 𝑦𝑦𝑧)) → ∃𝑦𝐵 (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ((𝐹𝑃) ∈ 𝑦𝑦𝑧)))
23 sstr 3075 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑥) ⊆ 𝑦𝑦𝑧) → (𝐹𝑥) ⊆ 𝑧)
2423expcom 115 . . . . . . . . . . . . . . . . 17 (𝑦𝑧 → ((𝐹𝑥) ⊆ 𝑦 → (𝐹𝑥) ⊆ 𝑧))
2524anim2d 335 . . . . . . . . . . . . . . . 16 (𝑦𝑧 → ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
2625reximdv 2510 . . . . . . . . . . . . . . 15 (𝑦𝑧 → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
2726com12 30 . . . . . . . . . . . . . 14 (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑦𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
2827imim2i 12 . . . . . . . . . . . . 13 (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ((𝐹𝑃) ∈ 𝑦 → (𝑦𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
2928imp32 255 . . . . . . . . . . . 12 ((((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ((𝐹𝑃) ∈ 𝑦𝑦𝑧)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))
3029rexlimivw 2522 . . . . . . . . . . 11 (∃𝑦𝐵 (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ((𝐹𝑃) ∈ 𝑦𝑦𝑧)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))
3122, 30syl 14 . . . . . . . . . 10 ((∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ∃𝑦𝐵 ((𝐹𝑃) ∈ 𝑦𝑦𝑧)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))
3231expcom 115 . . . . . . . . 9 (∃𝑦𝐵 ((𝐹𝑃) ∈ 𝑦𝑦𝑧) → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
3321, 32syl 14 . . . . . . . 8 ((𝑧 ∈ (topGen‘𝐵) ∧ (𝐹𝑃) ∈ 𝑧) → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
3433ex 114 . . . . . . 7 (𝑧 ∈ (topGen‘𝐵) → ((𝐹𝑃) ∈ 𝑧 → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
3534com23 78 . . . . . 6 (𝑧 ∈ (topGen‘𝐵) → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
3620, 35syl 14 . . . . 5 ((𝜑𝑧𝐾) → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
3736ralrimdva 2489 . . . 4 (𝜑 → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∀𝑧𝐾 ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
3837anim2d 335 . . 3 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) → (𝐹:𝑋𝑌 ∧ ∀𝑧𝐾 ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))))
39 iscnp 12295 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧𝐾 ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))))
401, 2, 3, 39syl3anc 1201 . . 3 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧𝐾 ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))))
4138, 40sylibrd 168 . 2 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)))
4218, 41impbid 128 1 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1316  wcel 1465  wral 2393  wrex 2394  wss 3041  cima 4512  wf 5089  cfv 5093  (class class class)co 5742  topGenctg 12062  Topctop 12091  TopOnctopon 12104  TopBasesctb 12136   CnP ccnp 12282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-map 6512  df-topgen 12068  df-top 12092  df-topon 12105  df-bases 12137  df-cnp 12285
This theorem is referenced by:  txcnp  12367  metcnp3  12607
  Copyright terms: Public domain W3C validator