ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgcnp GIF version

Theorem tgcnp 14377
Description: The "continuous at a point" predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
tgcn.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
tgcn.3 (𝜑𝐾 = (topGen‘𝐵))
tgcn.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
tgcnp.5 (𝜑𝑃𝑋)
Assertion
Ref Expression
tgcnp (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem tgcnp
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tgcn.1 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 tgcn.4 . . . 4 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 tgcnp.5 . . . 4 (𝜑𝑃𝑋)
4 iscnp 14367 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
51, 2, 3, 4syl3anc 1249 . . 3 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
6 tgcn.3 . . . . . . . . 9 (𝜑𝐾 = (topGen‘𝐵))
7 topontop 14182 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
82, 7syl 14 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
96, 8eqeltrrd 2271 . . . . . . . 8 (𝜑 → (topGen‘𝐵) ∈ Top)
10 tgclb 14233 . . . . . . . 8 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
119, 10sylibr 134 . . . . . . 7 (𝜑𝐵 ∈ TopBases)
12 bastg 14229 . . . . . . 7 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
1311, 12syl 14 . . . . . 6 (𝜑𝐵 ⊆ (topGen‘𝐵))
1413, 6sseqtrrd 3218 . . . . 5 (𝜑𝐵𝐾)
15 ssralv 3243 . . . . 5 (𝐵𝐾 → (∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))))
1614, 15syl 14 . . . 4 (𝜑 → (∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))))
1716anim2d 337 . . 3 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) → (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
185, 17sylbid 150 . 2 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
196eleq2d 2263 . . . . . . 7 (𝜑 → (𝑧𝐾𝑧 ∈ (topGen‘𝐵)))
2019biimpa 296 . . . . . 6 ((𝜑𝑧𝐾) → 𝑧 ∈ (topGen‘𝐵))
21 tg2 14228 . . . . . . . . 9 ((𝑧 ∈ (topGen‘𝐵) ∧ (𝐹𝑃) ∈ 𝑧) → ∃𝑦𝐵 ((𝐹𝑃) ∈ 𝑦𝑦𝑧))
22 r19.29 2631 . . . . . . . . . . 11 ((∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ∃𝑦𝐵 ((𝐹𝑃) ∈ 𝑦𝑦𝑧)) → ∃𝑦𝐵 (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ((𝐹𝑃) ∈ 𝑦𝑦𝑧)))
23 sstr 3187 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑥) ⊆ 𝑦𝑦𝑧) → (𝐹𝑥) ⊆ 𝑧)
2423expcom 116 . . . . . . . . . . . . . . . . 17 (𝑦𝑧 → ((𝐹𝑥) ⊆ 𝑦 → (𝐹𝑥) ⊆ 𝑧))
2524anim2d 337 . . . . . . . . . . . . . . . 16 (𝑦𝑧 → ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
2625reximdv 2595 . . . . . . . . . . . . . . 15 (𝑦𝑧 → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
2726com12 30 . . . . . . . . . . . . . 14 (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑦𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
2827imim2i 12 . . . . . . . . . . . . 13 (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ((𝐹𝑃) ∈ 𝑦 → (𝑦𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
2928imp32 257 . . . . . . . . . . . 12 ((((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ((𝐹𝑃) ∈ 𝑦𝑦𝑧)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))
3029rexlimivw 2607 . . . . . . . . . . 11 (∃𝑦𝐵 (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ((𝐹𝑃) ∈ 𝑦𝑦𝑧)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))
3122, 30syl 14 . . . . . . . . . 10 ((∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ∃𝑦𝐵 ((𝐹𝑃) ∈ 𝑦𝑦𝑧)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))
3231expcom 116 . . . . . . . . 9 (∃𝑦𝐵 ((𝐹𝑃) ∈ 𝑦𝑦𝑧) → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
3321, 32syl 14 . . . . . . . 8 ((𝑧 ∈ (topGen‘𝐵) ∧ (𝐹𝑃) ∈ 𝑧) → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
3433ex 115 . . . . . . 7 (𝑧 ∈ (topGen‘𝐵) → ((𝐹𝑃) ∈ 𝑧 → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
3534com23 78 . . . . . 6 (𝑧 ∈ (topGen‘𝐵) → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
3620, 35syl 14 . . . . 5 ((𝜑𝑧𝐾) → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
3736ralrimdva 2574 . . . 4 (𝜑 → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∀𝑧𝐾 ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
3837anim2d 337 . . 3 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) → (𝐹:𝑋𝑌 ∧ ∀𝑧𝐾 ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))))
39 iscnp 14367 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧𝐾 ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))))
401, 2, 3, 39syl3anc 1249 . . 3 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧𝐾 ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))))
4138, 40sylibrd 169 . 2 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)))
4218, 41impbid 129 1 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  wrex 2473  wss 3153  cima 4662  wf 5250  cfv 5254  (class class class)co 5918  topGenctg 12865  Topctop 14165  TopOnctopon 14178  TopBasesctb 14210   CnP ccnp 14354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-topgen 12871  df-top 14166  df-topon 14179  df-bases 14211  df-cnp 14357
This theorem is referenced by:  txcnp  14439  metcnp3  14679
  Copyright terms: Public domain W3C validator