| Step | Hyp | Ref
| Expression |
| 1 | | tgcn.1 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 2 | | tgcn.4 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| 3 | | tgcnp.5 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ 𝑋) |
| 4 | | iscnp 14435 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
| 5 | 1, 2, 3, 4 | syl3anc 1249 |
. . 3
⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
| 6 | | tgcn.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 = (topGen‘𝐵)) |
| 7 | | topontop 14250 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
| 8 | 2, 7 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Top) |
| 9 | 6, 8 | eqeltrrd 2274 |
. . . . . . . 8
⊢ (𝜑 → (topGen‘𝐵) ∈ Top) |
| 10 | | tgclb 14301 |
. . . . . . . 8
⊢ (𝐵 ∈ TopBases ↔
(topGen‘𝐵) ∈
Top) |
| 11 | 9, 10 | sylibr 134 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ TopBases) |
| 12 | | bastg 14297 |
. . . . . . 7
⊢ (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵)) |
| 13 | 11, 12 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ (topGen‘𝐵)) |
| 14 | 13, 6 | sseqtrrd 3222 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ 𝐾) |
| 15 | | ssralv 3247 |
. . . . 5
⊢ (𝐵 ⊆ 𝐾 → (∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)))) |
| 16 | 14, 15 | syl 14 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)))) |
| 17 | 16 | anim2d 337 |
. . 3
⊢ (𝜑 → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
| 18 | 5, 17 | sylbid 150 |
. 2
⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
| 19 | 6 | eleq2d 2266 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ 𝐾 ↔ 𝑧 ∈ (topGen‘𝐵))) |
| 20 | 19 | biimpa 296 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐾) → 𝑧 ∈ (topGen‘𝐵)) |
| 21 | | tg2 14296 |
. . . . . . . . 9
⊢ ((𝑧 ∈ (topGen‘𝐵) ∧ (𝐹‘𝑃) ∈ 𝑧) → ∃𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧)) |
| 22 | | r19.29 2634 |
. . . . . . . . . . 11
⊢
((∀𝑦 ∈
𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ∧ ∃𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧)) → ∃𝑦 ∈ 𝐵 (((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ∧ ((𝐹‘𝑃) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))) |
| 23 | | sstr 3191 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 “ 𝑥) ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑧) → (𝐹 “ 𝑥) ⊆ 𝑧) |
| 24 | 23 | expcom 116 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ⊆ 𝑧 → ((𝐹 “ 𝑥) ⊆ 𝑦 → (𝐹 “ 𝑥) ⊆ 𝑧)) |
| 25 | 24 | anim2d 337 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ⊆ 𝑧 → ((𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧))) |
| 26 | 25 | reximdv 2598 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ⊆ 𝑧 → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧))) |
| 27 | 26 | com12 30 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥 ∈
𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → (𝑦 ⊆ 𝑧 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧))) |
| 28 | 27 | imim2i 12 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ((𝐹‘𝑃) ∈ 𝑦 → (𝑦 ⊆ 𝑧 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧)))) |
| 29 | 28 | imp32 257 |
. . . . . . . . . . . 12
⊢ ((((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ∧ ((𝐹‘𝑃) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧)) |
| 30 | 29 | rexlimivw 2610 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝐵 (((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ∧ ((𝐹‘𝑃) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧)) |
| 31 | 22, 30 | syl 14 |
. . . . . . . . . 10
⊢
((∀𝑦 ∈
𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ∧ ∃𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧)) |
| 32 | 31 | expcom 116 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
𝐵 ((𝐹‘𝑃) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧) → (∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧))) |
| 33 | 21, 32 | syl 14 |
. . . . . . . 8
⊢ ((𝑧 ∈ (topGen‘𝐵) ∧ (𝐹‘𝑃) ∈ 𝑧) → (∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧))) |
| 34 | 33 | ex 115 |
. . . . . . 7
⊢ (𝑧 ∈ (topGen‘𝐵) → ((𝐹‘𝑃) ∈ 𝑧 → (∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧)))) |
| 35 | 34 | com23 78 |
. . . . . 6
⊢ (𝑧 ∈ (topGen‘𝐵) → (∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ((𝐹‘𝑃) ∈ 𝑧 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧)))) |
| 36 | 20, 35 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐾) → (∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ((𝐹‘𝑃) ∈ 𝑧 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧)))) |
| 37 | 36 | ralrimdva 2577 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ∀𝑧 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑧 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧)))) |
| 38 | 37 | anim2d 337 |
. . 3
⊢ (𝜑 → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑧 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑧 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧))))) |
| 39 | | iscnp 14435 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑧 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑧 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧))))) |
| 40 | 1, 2, 3, 39 | syl3anc 1249 |
. . 3
⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑧 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑧 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑧))))) |
| 41 | 38, 40 | sylibrd 169 |
. 2
⊢ (𝜑 → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) |
| 42 | 18, 41 | impbid 129 |
1
⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |