ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnv2d GIF version

Theorem f1ocnv2d 6077
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
f1od.1 𝐹 = (𝑥𝐴𝐶)
f1o2d.2 ((𝜑𝑥𝐴) → 𝐶𝐵)
f1o2d.3 ((𝜑𝑦𝐵) → 𝐷𝐴)
f1o2d.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
Assertion
Ref Expression
f1ocnv2d (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem f1ocnv2d
StepHypRef Expression
1 f1od.1 . 2 𝐹 = (𝑥𝐴𝐶)
2 f1o2d.2 . 2 ((𝜑𝑥𝐴) → 𝐶𝐵)
3 f1o2d.3 . 2 ((𝜑𝑦𝐵) → 𝐷𝐴)
4 eleq1a 2249 . . . . . 6 (𝐶𝐵 → (𝑦 = 𝐶𝑦𝐵))
52, 4syl 14 . . . . 5 ((𝜑𝑥𝐴) → (𝑦 = 𝐶𝑦𝐵))
65impr 379 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → 𝑦𝐵)
7 f1o2d.4 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
87biimpar 297 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑦 = 𝐶) → 𝑥 = 𝐷)
98exp42 371 . . . . . 6 (𝜑 → (𝑥𝐴 → (𝑦𝐵 → (𝑦 = 𝐶𝑥 = 𝐷))))
109com34 83 . . . . 5 (𝜑 → (𝑥𝐴 → (𝑦 = 𝐶 → (𝑦𝐵𝑥 = 𝐷))))
1110imp32 257 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → (𝑦𝐵𝑥 = 𝐷))
126, 11jcai 311 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → (𝑦𝐵𝑥 = 𝐷))
13 eleq1a 2249 . . . . . 6 (𝐷𝐴 → (𝑥 = 𝐷𝑥𝐴))
143, 13syl 14 . . . . 5 ((𝜑𝑦𝐵) → (𝑥 = 𝐷𝑥𝐴))
1514impr 379 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → 𝑥𝐴)
167biimpa 296 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑥 = 𝐷) → 𝑦 = 𝐶)
1716exp42 371 . . . . . . 7 (𝜑 → (𝑥𝐴 → (𝑦𝐵 → (𝑥 = 𝐷𝑦 = 𝐶))))
1817com23 78 . . . . . 6 (𝜑 → (𝑦𝐵 → (𝑥𝐴 → (𝑥 = 𝐷𝑦 = 𝐶))))
1918com34 83 . . . . 5 (𝜑 → (𝑦𝐵 → (𝑥 = 𝐷 → (𝑥𝐴𝑦 = 𝐶))))
2019imp32 257 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → (𝑥𝐴𝑦 = 𝐶))
2115, 20jcai 311 . . 3 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → (𝑥𝐴𝑦 = 𝐶))
2212, 21impbida 596 . 2 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
231, 2, 3, 22f1ocnvd 6075 1 (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  cmpt 4066  ccnv 4627  1-1-ontowf1o 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225
This theorem is referenced by:  f1o2d  6078  negf1o  8341  negiso  8914  iccf1o  10006  xrnegiso  11272  grpinvcnv  12943  grplactcnv  12977  txhmeo  13904
  Copyright terms: Public domain W3C validator