ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnidpig GIF version

Theorem addnidpig 7298
Description: There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995.)
Assertion
Ref Expression
addnidpig ((𝐴N𝐵N) → ¬ (𝐴 +N 𝐵) = 𝐴)

Proof of Theorem addnidpig
StepHypRef Expression
1 pinn 7271 . . 3 (𝐴N𝐴 ∈ ω)
2 elni2 7276 . . . 4 (𝐵N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵))
3 nnaordi 6487 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +o ∅) ∈ (𝐴 +o 𝐵)))
4 nna0 6453 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
54eleq1d 2239 . . . . . . . . 9 (𝐴 ∈ ω → ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) ↔ 𝐴 ∈ (𝐴 +o 𝐵)))
6 nnord 4596 . . . . . . . . . . . 12 (𝐴 ∈ ω → Ord 𝐴)
7 ordirr 4526 . . . . . . . . . . . 12 (Ord 𝐴 → ¬ 𝐴𝐴)
86, 7syl 14 . . . . . . . . . . 11 (𝐴 ∈ ω → ¬ 𝐴𝐴)
9 eleq2 2234 . . . . . . . . . . . 12 ((𝐴 +o 𝐵) = 𝐴 → (𝐴 ∈ (𝐴 +o 𝐵) ↔ 𝐴𝐴))
109notbid 662 . . . . . . . . . . 11 ((𝐴 +o 𝐵) = 𝐴 → (¬ 𝐴 ∈ (𝐴 +o 𝐵) ↔ ¬ 𝐴𝐴))
118, 10syl5ibrcom 156 . . . . . . . . . 10 (𝐴 ∈ ω → ((𝐴 +o 𝐵) = 𝐴 → ¬ 𝐴 ∈ (𝐴 +o 𝐵)))
1211con2d 619 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴 ∈ (𝐴 +o 𝐵) → ¬ (𝐴 +o 𝐵) = 𝐴))
135, 12sylbid 149 . . . . . . . 8 (𝐴 ∈ ω → ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) → ¬ (𝐴 +o 𝐵) = 𝐴))
1413adantl 275 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) → ¬ (𝐴 +o 𝐵) = 𝐴))
153, 14syld 45 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → ¬ (𝐴 +o 𝐵) = 𝐴))
1615expcom 115 . . . . 5 (𝐴 ∈ ω → (𝐵 ∈ ω → (∅ ∈ 𝐵 → ¬ (𝐴 +o 𝐵) = 𝐴)))
1716imp32 255 . . . 4 ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) → ¬ (𝐴 +o 𝐵) = 𝐴)
182, 17sylan2b 285 . . 3 ((𝐴 ∈ ω ∧ 𝐵N) → ¬ (𝐴 +o 𝐵) = 𝐴)
191, 18sylan 281 . 2 ((𝐴N𝐵N) → ¬ (𝐴 +o 𝐵) = 𝐴)
20 addpiord 7278 . . 3 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
2120eqeq1d 2179 . 2 ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = 𝐴 ↔ (𝐴 +o 𝐵) = 𝐴))
2219, 21mtbird 668 1 ((𝐴N𝐵N) → ¬ (𝐴 +N 𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1348  wcel 2141  c0 3414  Ord word 4347  ωcom 4574  (class class class)co 5853   +o coa 6392  Ncnpi 7234   +N cpli 7235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-ni 7266  df-pli 7267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator