| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > addnidpig | GIF version | ||
| Description: There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995.) | 
| Ref | Expression | 
|---|---|
| addnidpig | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ¬ (𝐴 +N 𝐵) = 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pinn 7376 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 2 | elni2 7381 | . . . 4 ⊢ (𝐵 ∈ N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) | |
| 3 | nnaordi 6566 | . . . . . . 7 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +o ∅) ∈ (𝐴 +o 𝐵))) | |
| 4 | nna0 6532 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴) | |
| 5 | 4 | eleq1d 2265 | . . . . . . . . 9 ⊢ (𝐴 ∈ ω → ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) ↔ 𝐴 ∈ (𝐴 +o 𝐵))) | 
| 6 | nnord 4648 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
| 7 | ordirr 4578 | . . . . . . . . . . . 12 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 8 | 6, 7 | syl 14 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ω → ¬ 𝐴 ∈ 𝐴) | 
| 9 | eleq2 2260 | . . . . . . . . . . . 12 ⊢ ((𝐴 +o 𝐵) = 𝐴 → (𝐴 ∈ (𝐴 +o 𝐵) ↔ 𝐴 ∈ 𝐴)) | |
| 10 | 9 | notbid 668 | . . . . . . . . . . 11 ⊢ ((𝐴 +o 𝐵) = 𝐴 → (¬ 𝐴 ∈ (𝐴 +o 𝐵) ↔ ¬ 𝐴 ∈ 𝐴)) | 
| 11 | 8, 10 | syl5ibrcom 157 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ω → ((𝐴 +o 𝐵) = 𝐴 → ¬ 𝐴 ∈ (𝐴 +o 𝐵))) | 
| 12 | 11 | con2d 625 | . . . . . . . . 9 ⊢ (𝐴 ∈ ω → (𝐴 ∈ (𝐴 +o 𝐵) → ¬ (𝐴 +o 𝐵) = 𝐴)) | 
| 13 | 5, 12 | sylbid 150 | . . . . . . . 8 ⊢ (𝐴 ∈ ω → ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) → ¬ (𝐴 +o 𝐵) = 𝐴)) | 
| 14 | 13 | adantl 277 | . . . . . . 7 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) → ¬ (𝐴 +o 𝐵) = 𝐴)) | 
| 15 | 3, 14 | syld 45 | . . . . . 6 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → ¬ (𝐴 +o 𝐵) = 𝐴)) | 
| 16 | 15 | expcom 116 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (∅ ∈ 𝐵 → ¬ (𝐴 +o 𝐵) = 𝐴))) | 
| 17 | 16 | imp32 257 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) → ¬ (𝐴 +o 𝐵) = 𝐴) | 
| 18 | 2, 17 | sylan2b 287 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → ¬ (𝐴 +o 𝐵) = 𝐴) | 
| 19 | 1, 18 | sylan 283 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ¬ (𝐴 +o 𝐵) = 𝐴) | 
| 20 | addpiord 7383 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) | |
| 21 | 20 | eqeq1d 2205 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ((𝐴 +N 𝐵) = 𝐴 ↔ (𝐴 +o 𝐵) = 𝐴)) | 
| 22 | 19, 21 | mtbird 674 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ¬ (𝐴 +N 𝐵) = 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∅c0 3450 Ord word 4397 ωcom 4626 (class class class)co 5922 +o coa 6471 Ncnpi 7339 +N cpli 7340 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-oadd 6478 df-ni 7371 df-pli 7372 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |