Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addnidpig | GIF version |
Description: There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995.) |
Ref | Expression |
---|---|
addnidpig | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ¬ (𝐴 +N 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 7250 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
2 | elni2 7255 | . . . 4 ⊢ (𝐵 ∈ N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) | |
3 | nnaordi 6476 | . . . . . . 7 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +o ∅) ∈ (𝐴 +o 𝐵))) | |
4 | nna0 6442 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴) | |
5 | 4 | eleq1d 2235 | . . . . . . . . 9 ⊢ (𝐴 ∈ ω → ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) ↔ 𝐴 ∈ (𝐴 +o 𝐵))) |
6 | nnord 4589 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
7 | ordirr 4519 | . . . . . . . . . . . 12 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
8 | 6, 7 | syl 14 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ω → ¬ 𝐴 ∈ 𝐴) |
9 | eleq2 2230 | . . . . . . . . . . . 12 ⊢ ((𝐴 +o 𝐵) = 𝐴 → (𝐴 ∈ (𝐴 +o 𝐵) ↔ 𝐴 ∈ 𝐴)) | |
10 | 9 | notbid 657 | . . . . . . . . . . 11 ⊢ ((𝐴 +o 𝐵) = 𝐴 → (¬ 𝐴 ∈ (𝐴 +o 𝐵) ↔ ¬ 𝐴 ∈ 𝐴)) |
11 | 8, 10 | syl5ibrcom 156 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ω → ((𝐴 +o 𝐵) = 𝐴 → ¬ 𝐴 ∈ (𝐴 +o 𝐵))) |
12 | 11 | con2d 614 | . . . . . . . . 9 ⊢ (𝐴 ∈ ω → (𝐴 ∈ (𝐴 +o 𝐵) → ¬ (𝐴 +o 𝐵) = 𝐴)) |
13 | 5, 12 | sylbid 149 | . . . . . . . 8 ⊢ (𝐴 ∈ ω → ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) → ¬ (𝐴 +o 𝐵) = 𝐴)) |
14 | 13 | adantl 275 | . . . . . . 7 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) → ¬ (𝐴 +o 𝐵) = 𝐴)) |
15 | 3, 14 | syld 45 | . . . . . 6 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → ¬ (𝐴 +o 𝐵) = 𝐴)) |
16 | 15 | expcom 115 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (∅ ∈ 𝐵 → ¬ (𝐴 +o 𝐵) = 𝐴))) |
17 | 16 | imp32 255 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) → ¬ (𝐴 +o 𝐵) = 𝐴) |
18 | 2, 17 | sylan2b 285 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → ¬ (𝐴 +o 𝐵) = 𝐴) |
19 | 1, 18 | sylan 281 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ¬ (𝐴 +o 𝐵) = 𝐴) |
20 | addpiord 7257 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) | |
21 | 20 | eqeq1d 2174 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ((𝐴 +N 𝐵) = 𝐴 ↔ (𝐴 +o 𝐵) = 𝐴)) |
22 | 19, 21 | mtbird 663 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ¬ (𝐴 +N 𝐵) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∅c0 3409 Ord word 4340 ωcom 4567 (class class class)co 5842 +o coa 6381 Ncnpi 7213 +N cpli 7214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 df-ni 7245 df-pli 7246 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |