| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resdmres | GIF version | ||
| Description: Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007.) |
| Ref | Expression |
|---|---|
| resdmres | ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in12 3374 | . . . 4 ⊢ (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) = ((𝐵 × V) ∩ (𝐴 ∩ (dom 𝐴 × V))) | |
| 2 | df-res 4675 | . . . . . 6 ⊢ (𝐴 ↾ dom 𝐴) = (𝐴 ∩ (dom 𝐴 × V)) | |
| 3 | resdm2 5160 | . . . . . 6 ⊢ (𝐴 ↾ dom 𝐴) = ◡◡𝐴 | |
| 4 | 2, 3 | eqtr3i 2219 | . . . . 5 ⊢ (𝐴 ∩ (dom 𝐴 × V)) = ◡◡𝐴 |
| 5 | 4 | ineq2i 3361 | . . . 4 ⊢ ((𝐵 × V) ∩ (𝐴 ∩ (dom 𝐴 × V))) = ((𝐵 × V) ∩ ◡◡𝐴) |
| 6 | incom 3355 | . . . 4 ⊢ ((𝐵 × V) ∩ ◡◡𝐴) = (◡◡𝐴 ∩ (𝐵 × V)) | |
| 7 | 1, 5, 6 | 3eqtri 2221 | . . 3 ⊢ (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) = (◡◡𝐴 ∩ (𝐵 × V)) |
| 8 | df-res 4675 | . . . 4 ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ∩ (dom (𝐴 ↾ 𝐵) × V)) | |
| 9 | dmres 4967 | . . . . . . 7 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | |
| 10 | 9 | xpeq1i 4683 | . . . . . 6 ⊢ (dom (𝐴 ↾ 𝐵) × V) = ((𝐵 ∩ dom 𝐴) × V) |
| 11 | xpindir 4802 | . . . . . 6 ⊢ ((𝐵 ∩ dom 𝐴) × V) = ((𝐵 × V) ∩ (dom 𝐴 × V)) | |
| 12 | 10, 11 | eqtri 2217 | . . . . 5 ⊢ (dom (𝐴 ↾ 𝐵) × V) = ((𝐵 × V) ∩ (dom 𝐴 × V)) |
| 13 | 12 | ineq2i 3361 | . . . 4 ⊢ (𝐴 ∩ (dom (𝐴 ↾ 𝐵) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) |
| 14 | 8, 13 | eqtri 2217 | . . 3 ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) |
| 15 | df-res 4675 | . . 3 ⊢ (◡◡𝐴 ↾ 𝐵) = (◡◡𝐴 ∩ (𝐵 × V)) | |
| 16 | 7, 14, 15 | 3eqtr4i 2227 | . 2 ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (◡◡𝐴 ↾ 𝐵) |
| 17 | rescnvcnv 5132 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
| 18 | 16, 17 | eqtri 2217 | 1 ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 Vcvv 2763 ∩ cin 3156 × cxp 4661 ◡ccnv 4662 dom cdm 4663 ↾ cres 4665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 |
| This theorem is referenced by: imadmres 5162 metreslem 14616 |
| Copyright terms: Public domain | W3C validator |