ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdmres GIF version

Theorem resdmres 5158
Description: Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
resdmres (𝐴 ↾ dom (𝐴𝐵)) = (𝐴𝐵)

Proof of Theorem resdmres
StepHypRef Expression
1 in12 3371 . . . 4 (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) = ((𝐵 × V) ∩ (𝐴 ∩ (dom 𝐴 × V)))
2 df-res 4672 . . . . . 6 (𝐴 ↾ dom 𝐴) = (𝐴 ∩ (dom 𝐴 × V))
3 resdm2 5157 . . . . . 6 (𝐴 ↾ dom 𝐴) = 𝐴
42, 3eqtr3i 2216 . . . . 5 (𝐴 ∩ (dom 𝐴 × V)) = 𝐴
54ineq2i 3358 . . . 4 ((𝐵 × V) ∩ (𝐴 ∩ (dom 𝐴 × V))) = ((𝐵 × V) ∩ 𝐴)
6 incom 3352 . . . 4 ((𝐵 × V) ∩ 𝐴) = (𝐴 ∩ (𝐵 × V))
71, 5, 63eqtri 2218 . . 3 (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) = (𝐴 ∩ (𝐵 × V))
8 df-res 4672 . . . 4 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴 ∩ (dom (𝐴𝐵) × V))
9 dmres 4964 . . . . . . 7 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
109xpeq1i 4680 . . . . . 6 (dom (𝐴𝐵) × V) = ((𝐵 ∩ dom 𝐴) × V)
11 xpindir 4799 . . . . . 6 ((𝐵 ∩ dom 𝐴) × V) = ((𝐵 × V) ∩ (dom 𝐴 × V))
1210, 11eqtri 2214 . . . . 5 (dom (𝐴𝐵) × V) = ((𝐵 × V) ∩ (dom 𝐴 × V))
1312ineq2i 3358 . . . 4 (𝐴 ∩ (dom (𝐴𝐵) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V)))
148, 13eqtri 2214 . . 3 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V)))
15 df-res 4672 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
167, 14, 153eqtr4i 2224 . 2 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴𝐵)
17 rescnvcnv 5129 . 2 (𝐴𝐵) = (𝐴𝐵)
1816, 17eqtri 2214 1 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  Vcvv 2760  cin 3153   × cxp 4658  ccnv 4659  dom cdm 4660  cres 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668  df-dm 4670  df-rn 4671  df-res 4672
This theorem is referenced by:  imadmres  5159  metreslem  14559
  Copyright terms: Public domain W3C validator