ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdmres GIF version

Theorem resdmres 5161
Description: Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
resdmres (𝐴 ↾ dom (𝐴𝐵)) = (𝐴𝐵)

Proof of Theorem resdmres
StepHypRef Expression
1 in12 3374 . . . 4 (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) = ((𝐵 × V) ∩ (𝐴 ∩ (dom 𝐴 × V)))
2 df-res 4675 . . . . . 6 (𝐴 ↾ dom 𝐴) = (𝐴 ∩ (dom 𝐴 × V))
3 resdm2 5160 . . . . . 6 (𝐴 ↾ dom 𝐴) = 𝐴
42, 3eqtr3i 2219 . . . . 5 (𝐴 ∩ (dom 𝐴 × V)) = 𝐴
54ineq2i 3361 . . . 4 ((𝐵 × V) ∩ (𝐴 ∩ (dom 𝐴 × V))) = ((𝐵 × V) ∩ 𝐴)
6 incom 3355 . . . 4 ((𝐵 × V) ∩ 𝐴) = (𝐴 ∩ (𝐵 × V))
71, 5, 63eqtri 2221 . . 3 (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) = (𝐴 ∩ (𝐵 × V))
8 df-res 4675 . . . 4 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴 ∩ (dom (𝐴𝐵) × V))
9 dmres 4967 . . . . . . 7 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
109xpeq1i 4683 . . . . . 6 (dom (𝐴𝐵) × V) = ((𝐵 ∩ dom 𝐴) × V)
11 xpindir 4802 . . . . . 6 ((𝐵 ∩ dom 𝐴) × V) = ((𝐵 × V) ∩ (dom 𝐴 × V))
1210, 11eqtri 2217 . . . . 5 (dom (𝐴𝐵) × V) = ((𝐵 × V) ∩ (dom 𝐴 × V))
1312ineq2i 3361 . . . 4 (𝐴 ∩ (dom (𝐴𝐵) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V)))
148, 13eqtri 2217 . . 3 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V)))
15 df-res 4675 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
167, 14, 153eqtr4i 2227 . 2 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴𝐵)
17 rescnvcnv 5132 . 2 (𝐴𝐵) = (𝐴𝐵)
1816, 17eqtri 2217 1 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  Vcvv 2763  cin 3156   × cxp 4661  ccnv 4662  dom cdm 4663  cres 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675
This theorem is referenced by:  imadmres  5162  metreslem  14616
  Copyright terms: Public domain W3C validator