| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resdmres | GIF version | ||
| Description: Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007.) |
| Ref | Expression |
|---|---|
| resdmres | ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in12 3388 | . . . 4 ⊢ (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) = ((𝐵 × V) ∩ (𝐴 ∩ (dom 𝐴 × V))) | |
| 2 | df-res 4700 | . . . . . 6 ⊢ (𝐴 ↾ dom 𝐴) = (𝐴 ∩ (dom 𝐴 × V)) | |
| 3 | resdm2 5187 | . . . . . 6 ⊢ (𝐴 ↾ dom 𝐴) = ◡◡𝐴 | |
| 4 | 2, 3 | eqtr3i 2229 | . . . . 5 ⊢ (𝐴 ∩ (dom 𝐴 × V)) = ◡◡𝐴 |
| 5 | 4 | ineq2i 3375 | . . . 4 ⊢ ((𝐵 × V) ∩ (𝐴 ∩ (dom 𝐴 × V))) = ((𝐵 × V) ∩ ◡◡𝐴) |
| 6 | incom 3369 | . . . 4 ⊢ ((𝐵 × V) ∩ ◡◡𝐴) = (◡◡𝐴 ∩ (𝐵 × V)) | |
| 7 | 1, 5, 6 | 3eqtri 2231 | . . 3 ⊢ (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) = (◡◡𝐴 ∩ (𝐵 × V)) |
| 8 | df-res 4700 | . . . 4 ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ∩ (dom (𝐴 ↾ 𝐵) × V)) | |
| 9 | dmres 4994 | . . . . . . 7 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | |
| 10 | 9 | xpeq1i 4708 | . . . . . 6 ⊢ (dom (𝐴 ↾ 𝐵) × V) = ((𝐵 ∩ dom 𝐴) × V) |
| 11 | xpindir 4827 | . . . . . 6 ⊢ ((𝐵 ∩ dom 𝐴) × V) = ((𝐵 × V) ∩ (dom 𝐴 × V)) | |
| 12 | 10, 11 | eqtri 2227 | . . . . 5 ⊢ (dom (𝐴 ↾ 𝐵) × V) = ((𝐵 × V) ∩ (dom 𝐴 × V)) |
| 13 | 12 | ineq2i 3375 | . . . 4 ⊢ (𝐴 ∩ (dom (𝐴 ↾ 𝐵) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) |
| 14 | 8, 13 | eqtri 2227 | . . 3 ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) |
| 15 | df-res 4700 | . . 3 ⊢ (◡◡𝐴 ↾ 𝐵) = (◡◡𝐴 ∩ (𝐵 × V)) | |
| 16 | 7, 14, 15 | 3eqtr4i 2237 | . 2 ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (◡◡𝐴 ↾ 𝐵) |
| 17 | rescnvcnv 5159 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
| 18 | 16, 17 | eqtri 2227 | 1 ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 Vcvv 2773 ∩ cin 3169 × cxp 4686 ◡ccnv 4687 dom cdm 4688 ↾ cres 4690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4055 df-opab 4117 df-xp 4694 df-rel 4695 df-cnv 4696 df-dm 4698 df-rn 4699 df-res 4700 |
| This theorem is referenced by: imadmres 5189 metreslem 14937 |
| Copyright terms: Public domain | W3C validator |