| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resdmdfsn | GIF version | ||
| Description: Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018.) |
| Ref | Expression |
|---|---|
| resdmdfsn | ⊢ (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resindm 5020 | . 2 ⊢ (Rel 𝑅 → (𝑅 ↾ ((V ∖ {𝑋}) ∩ dom 𝑅)) = (𝑅 ↾ (V ∖ {𝑋}))) | |
| 2 | indif1 3426 | . . . 4 ⊢ ((V ∖ {𝑋}) ∩ dom 𝑅) = ((V ∩ dom 𝑅) ∖ {𝑋}) | |
| 3 | incom 3373 | . . . . . 6 ⊢ (V ∩ dom 𝑅) = (dom 𝑅 ∩ V) | |
| 4 | inv1 3505 | . . . . . 6 ⊢ (dom 𝑅 ∩ V) = dom 𝑅 | |
| 5 | 3, 4 | eqtri 2228 | . . . . 5 ⊢ (V ∩ dom 𝑅) = dom 𝑅 |
| 6 | 5 | difeq1i 3295 | . . . 4 ⊢ ((V ∩ dom 𝑅) ∖ {𝑋}) = (dom 𝑅 ∖ {𝑋}) |
| 7 | 2, 6 | eqtri 2228 | . . 3 ⊢ ((V ∖ {𝑋}) ∩ dom 𝑅) = (dom 𝑅 ∖ {𝑋}) |
| 8 | 7 | reseq2i 4975 | . 2 ⊢ (𝑅 ↾ ((V ∖ {𝑋}) ∩ dom 𝑅)) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋})) |
| 9 | 1, 8 | eqtr3di 2255 | 1 ⊢ (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋}))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 Vcvv 2776 ∖ cdif 3171 ∩ cin 3173 {csn 3643 dom cdm 4693 ↾ cres 4695 Rel wrel 4698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-dm 4703 df-res 4705 |
| This theorem is referenced by: funresdfunsnss 5810 funresdfunsndc 6615 |
| Copyright terms: Public domain | W3C validator |