ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdmdfsn GIF version

Theorem resdmdfsn 4985
Description: Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018.)
Assertion
Ref Expression
resdmdfsn (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋})))

Proof of Theorem resdmdfsn
StepHypRef Expression
1 resindm 4984 . 2 (Rel 𝑅 → (𝑅 ↾ ((V ∖ {𝑋}) ∩ dom 𝑅)) = (𝑅 ↾ (V ∖ {𝑋})))
2 indif1 3404 . . . 4 ((V ∖ {𝑋}) ∩ dom 𝑅) = ((V ∩ dom 𝑅) ∖ {𝑋})
3 incom 3351 . . . . . 6 (V ∩ dom 𝑅) = (dom 𝑅 ∩ V)
4 inv1 3483 . . . . . 6 (dom 𝑅 ∩ V) = dom 𝑅
53, 4eqtri 2214 . . . . 5 (V ∩ dom 𝑅) = dom 𝑅
65difeq1i 3273 . . . 4 ((V ∩ dom 𝑅) ∖ {𝑋}) = (dom 𝑅 ∖ {𝑋})
72, 6eqtri 2214 . . 3 ((V ∖ {𝑋}) ∩ dom 𝑅) = (dom 𝑅 ∖ {𝑋})
87reseq2i 4939 . 2 (𝑅 ↾ ((V ∖ {𝑋}) ∩ dom 𝑅)) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋}))
91, 8eqtr3di 2241 1 (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋})))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  Vcvv 2760  cdif 3150  cin 3152  {csn 3618  dom cdm 4659  cres 4661  Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-dm 4669  df-res 4671
This theorem is referenced by:  funresdfunsnss  5761  funresdfunsndc  6559
  Copyright terms: Public domain W3C validator