| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resdmdfsn | GIF version | ||
| Description: Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018.) |
| Ref | Expression |
|---|---|
| resdmdfsn | ⊢ (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resindm 5000 | . 2 ⊢ (Rel 𝑅 → (𝑅 ↾ ((V ∖ {𝑋}) ∩ dom 𝑅)) = (𝑅 ↾ (V ∖ {𝑋}))) | |
| 2 | indif1 3417 | . . . 4 ⊢ ((V ∖ {𝑋}) ∩ dom 𝑅) = ((V ∩ dom 𝑅) ∖ {𝑋}) | |
| 3 | incom 3364 | . . . . . 6 ⊢ (V ∩ dom 𝑅) = (dom 𝑅 ∩ V) | |
| 4 | inv1 3496 | . . . . . 6 ⊢ (dom 𝑅 ∩ V) = dom 𝑅 | |
| 5 | 3, 4 | eqtri 2225 | . . . . 5 ⊢ (V ∩ dom 𝑅) = dom 𝑅 |
| 6 | 5 | difeq1i 3286 | . . . 4 ⊢ ((V ∩ dom 𝑅) ∖ {𝑋}) = (dom 𝑅 ∖ {𝑋}) |
| 7 | 2, 6 | eqtri 2225 | . . 3 ⊢ ((V ∖ {𝑋}) ∩ dom 𝑅) = (dom 𝑅 ∖ {𝑋}) |
| 8 | 7 | reseq2i 4955 | . 2 ⊢ (𝑅 ↾ ((V ∖ {𝑋}) ∩ dom 𝑅)) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋})) |
| 9 | 1, 8 | eqtr3di 2252 | 1 ⊢ (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋}))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 Vcvv 2771 ∖ cdif 3162 ∩ cin 3164 {csn 3632 dom cdm 4674 ↾ cres 4676 Rel wrel 4679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4680 df-rel 4681 df-dm 4684 df-res 4686 |
| This theorem is referenced by: funresdfunsnss 5786 funresdfunsndc 6591 |
| Copyright terms: Public domain | W3C validator |