ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdmdfsn GIF version

Theorem resdmdfsn 4952
Description: Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018.)
Assertion
Ref Expression
resdmdfsn (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋})))

Proof of Theorem resdmdfsn
StepHypRef Expression
1 resindm 4951 . 2 (Rel 𝑅 → (𝑅 ↾ ((V ∖ {𝑋}) ∩ dom 𝑅)) = (𝑅 ↾ (V ∖ {𝑋})))
2 indif1 3382 . . . 4 ((V ∖ {𝑋}) ∩ dom 𝑅) = ((V ∩ dom 𝑅) ∖ {𝑋})
3 incom 3329 . . . . . 6 (V ∩ dom 𝑅) = (dom 𝑅 ∩ V)
4 inv1 3461 . . . . . 6 (dom 𝑅 ∩ V) = dom 𝑅
53, 4eqtri 2198 . . . . 5 (V ∩ dom 𝑅) = dom 𝑅
65difeq1i 3251 . . . 4 ((V ∩ dom 𝑅) ∖ {𝑋}) = (dom 𝑅 ∖ {𝑋})
72, 6eqtri 2198 . . 3 ((V ∖ {𝑋}) ∩ dom 𝑅) = (dom 𝑅 ∖ {𝑋})
87reseq2i 4906 . 2 (𝑅 ↾ ((V ∖ {𝑋}) ∩ dom 𝑅)) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋}))
91, 8eqtr3di 2225 1 (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋})))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  Vcvv 2739  cdif 3128  cin 3130  {csn 3594  dom cdm 4628  cres 4630  Rel wrel 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-dm 4638  df-res 4640
This theorem is referenced by:  funresdfunsnss  5721  funresdfunsndc  6509
  Copyright terms: Public domain W3C validator