ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resindi GIF version

Theorem resindi 5019
Description: Class restriction distributes over intersection. (Contributed by FL, 6-Oct-2008.)
Assertion
Ref Expression
resindi (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))

Proof of Theorem resindi
StepHypRef Expression
1 xpindir 4857 . . . 4 ((𝐵𝐶) × V) = ((𝐵 × V) ∩ (𝐶 × V))
21ineq2i 3402 . . 3 (𝐴 ∩ ((𝐵𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V)))
3 inindi 3421 . . 3 (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐴 ∩ (𝐶 × V)))
42, 3eqtri 2250 . 2 (𝐴 ∩ ((𝐵𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐴 ∩ (𝐶 × V)))
5 df-res 4730 . 2 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ∩ ((𝐵𝐶) × V))
6 df-res 4730 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
7 df-res 4730 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
86, 7ineq12i 3403 . 2 ((𝐴𝐵) ∩ (𝐴𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐴 ∩ (𝐶 × V)))
94, 5, 83eqtr4i 2260 1 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
Colors of variables: wff set class
Syntax hints:   = wceq 1395  Vcvv 2799  cin 3196   × cxp 4716  cres 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4145  df-xp 4724  df-rel 4725  df-res 4730
This theorem is referenced by:  resindm  5046
  Copyright terms: Public domain W3C validator