| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resindi | GIF version | ||
| Description: Class restriction distributes over intersection. (Contributed by FL, 6-Oct-2008.) |
| Ref | Expression |
|---|---|
| resindi | ⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpindir 4832 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) × V) = ((𝐵 × V) ∩ (𝐶 × V)) | |
| 2 | 1 | ineq2i 3379 | . . 3 ⊢ (𝐴 ∩ ((𝐵 ∩ 𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V))) |
| 3 | inindi 3398 | . . 3 ⊢ (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐴 ∩ (𝐶 × V))) | |
| 4 | 2, 3 | eqtri 2228 | . 2 ⊢ (𝐴 ∩ ((𝐵 ∩ 𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐴 ∩ (𝐶 × V))) |
| 5 | df-res 4705 | . 2 ⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 ∩ ((𝐵 ∩ 𝐶) × V)) | |
| 6 | df-res 4705 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 7 | df-res 4705 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 8 | 6, 7 | ineq12i 3380 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ 𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐴 ∩ (𝐶 × V))) |
| 9 | 4, 5, 8 | 3eqtr4i 2238 | 1 ⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 Vcvv 2776 ∩ cin 3173 × cxp 4691 ↾ cres 4695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-opab 4122 df-xp 4699 df-rel 4700 df-res 4705 |
| This theorem is referenced by: resindm 5020 |
| Copyright terms: Public domain | W3C validator |