Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inidm | GIF version |
Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
inidm | ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 394 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
2 | 1 | ineqri 3320 | 1 ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 ∩ cin 3120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 |
This theorem is referenced by: inindi 3344 inindir 3345 uneqin 3378 ssdifeq0 3497 intsng 3865 xpindi 4746 xpindir 4747 resindm 4933 ofres 6075 offval2 6076 ofrfval2 6077 suppssof1 6078 ofco 6079 offveqb 6080 caofref 6082 caofrss 6085 caoftrn 6086 undifdc 6901 baspartn 12842 epttop 12884 dvaddxxbr 13459 dvmulxxbr 13460 dvaddxx 13461 dvmulxx 13462 dviaddf 13463 dvimulf 13464 |
Copyright terms: Public domain | W3C validator |