| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inidm | GIF version | ||
| Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| inidm | ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidm 396 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
| 2 | 1 | ineqri 3356 | 1 ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 ∩ cin 3156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 |
| This theorem is referenced by: inindi 3380 inindir 3381 uneqin 3414 ssdifeq0 3533 intsng 3908 xpindi 4801 xpindir 4802 resindm 4988 ofres 6150 offval2 6151 ofrfval2 6152 suppssof1 6153 ofco 6154 offveqb 6155 ofc1g 6156 ofc2g 6157 caofref 6159 caofrss 6162 caoftrn 6163 undifdc 6985 ofnegsub 8989 ressbasid 12748 strressid 12749 ressinbasd 12752 grpressid 13193 gsumfzmptfidmadd 13469 lcomf 13883 crng2idl 14087 psrbaglesuppg 14226 psraddcl 14232 baspartn 14286 epttop 14326 dvaddxxbr 14937 dvmulxxbr 14938 dvaddxx 14939 dvmulxx 14940 dviaddf 14941 dvimulf 14942 plyaddlem1 14983 plyaddlem 14985 |
| Copyright terms: Public domain | W3C validator |