![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inidm | GIF version |
Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
inidm | ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 391 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
2 | 1 | ineqri 3216 | 1 ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1299 ∈ wcel 1448 ∩ cin 3020 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-in 3027 |
This theorem is referenced by: inindi 3240 inindir 3241 uneqin 3274 ssdifeq0 3392 intsng 3752 xpindi 4612 xpindir 4613 resindm 4797 ofres 5927 offval2 5928 ofrfval2 5929 suppssof1 5930 ofco 5931 offveqb 5932 caofref 5934 caofrss 5937 caoftrn 5938 undifdc 6741 baspartn 11999 epttop 12041 |
Copyright terms: Public domain | W3C validator |