ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inidm GIF version

Theorem inidm 3369
Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
inidm (𝐴𝐴) = 𝐴

Proof of Theorem inidm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 anidm 396 . 2 ((𝑥𝐴𝑥𝐴) ↔ 𝑥𝐴)
21ineqri 3353 1 (𝐴𝐴) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  cin 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3160
This theorem is referenced by:  inindi  3377  inindir  3378  uneqin  3411  ssdifeq0  3530  intsng  3905  xpindi  4798  xpindir  4799  resindm  4985  ofres  6147  offval2  6148  ofrfval2  6149  suppssof1  6150  ofco  6151  offveqb  6152  ofc1g  6153  ofc2g  6154  caofref  6156  caofrss  6159  caoftrn  6160  undifdc  6982  ofnegsub  8983  ressbasid  12691  strressid  12692  ressinbasd  12695  grpressid  13136  gsumfzmptfidmadd  13412  lcomf  13826  crng2idl  14030  psrbaglesuppg  14169  psraddcl  14175  baspartn  14229  epttop  14269  dvaddxxbr  14880  dvmulxxbr  14881  dvaddxx  14882  dvmulxx  14883  dviaddf  14884  dvimulf  14885  plyaddlem1  14926  plyaddlem  14928
  Copyright terms: Public domain W3C validator