| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inidm | GIF version | ||
| Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| inidm | ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidm 396 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
| 2 | 1 | ineqri 3357 | 1 ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 ∩ cin 3156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 |
| This theorem is referenced by: inindi 3381 inindir 3382 uneqin 3415 ssdifeq0 3534 intsng 3909 xpindi 4802 xpindir 4803 resindm 4989 ofres 6154 offval2 6155 ofrfval2 6156 suppssof1 6157 ofco 6158 offveqb 6159 ofc1g 6161 ofc2g 6162 caofref 6164 caofrss 6171 caoftrn 6172 undifdc 6994 ofnegsub 9008 ressbasid 12775 strressid 12776 ressinbasd 12779 grpressid 13265 gsumfzmptfidmadd 13547 lcomf 13961 crng2idl 14165 psrbaglesuppg 14306 psraddcl 14314 mplsubgfilemcl 14333 baspartn 14394 epttop 14434 dvaddxxbr 15045 dvmulxxbr 15046 dvaddxx 15047 dvmulxx 15048 dviaddf 15049 dvimulf 15050 plyaddlem1 15091 plyaddlem 15093 |
| Copyright terms: Public domain | W3C validator |