| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inidm | GIF version | ||
| Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| inidm | ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidm 396 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
| 2 | 1 | ineqri 3366 | 1 ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2176 ∩ cin 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 |
| This theorem is referenced by: inindi 3390 inindir 3391 uneqin 3424 ssdifeq0 3543 intsng 3919 xpindi 4813 xpindir 4814 resindm 5001 ofres 6173 offval2 6174 ofrfval2 6175 suppssof1 6176 ofco 6177 offveqb 6178 ofc1g 6180 ofc2g 6181 caofref 6183 caofrss 6190 caoftrn 6191 undifdc 7021 ofnegsub 9035 ressbasid 12902 strressid 12903 ressinbasd 12906 grpressid 13393 gsumfzmptfidmadd 13675 lcomf 14089 crng2idl 14293 psrbaglesuppg 14434 psraddcl 14442 mplsubgfilemcl 14461 baspartn 14522 epttop 14562 dvaddxxbr 15173 dvmulxxbr 15174 dvaddxx 15175 dvmulxx 15176 dviaddf 15177 dvimulf 15178 plyaddlem1 15219 plyaddlem 15221 |
| Copyright terms: Public domain | W3C validator |