![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inidm | GIF version |
Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
inidm | ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 396 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
2 | 1 | ineqri 3353 | 1 ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 ∩ cin 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 |
This theorem is referenced by: inindi 3377 inindir 3378 uneqin 3411 ssdifeq0 3530 intsng 3905 xpindi 4798 xpindir 4799 resindm 4985 ofres 6147 offval2 6148 ofrfval2 6149 suppssof1 6150 ofco 6151 offveqb 6152 ofc1g 6153 ofc2g 6154 caofref 6156 caofrss 6159 caoftrn 6160 undifdc 6982 ofnegsub 8983 ressbasid 12691 strressid 12692 ressinbasd 12695 grpressid 13136 gsumfzmptfidmadd 13412 lcomf 13826 crng2idl 14030 psrbaglesuppg 14169 psraddcl 14175 baspartn 14229 epttop 14269 dvaddxxbr 14880 dvmulxxbr 14881 dvaddxx 14882 dvmulxx 14883 dviaddf 14884 dvimulf 14885 plyaddlem1 14926 plyaddlem 14928 |
Copyright terms: Public domain | W3C validator |