| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inidm | GIF version | ||
| Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| inidm | ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidm 396 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
| 2 | 1 | ineqri 3397 | 1 ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 ∩ cin 3196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 |
| This theorem is referenced by: inindi 3421 inindir 3422 uneqin 3455 ssdifeq0 3574 intsng 3957 xpindi 4857 xpindir 4858 resindm 5047 ofres 6233 offval2 6234 ofrfval2 6235 suppssof1 6236 ofco 6237 offveqb 6238 ofc1g 6240 ofc2g 6241 caofref 6243 caofrss 6250 caoftrn 6251 undifdc 7086 ofnegsub 9109 ressbasid 13103 strressid 13104 ressinbasd 13107 grpressid 13594 gsumfzmptfidmadd 13876 lcomf 14291 crng2idl 14495 psrbaglesuppg 14636 psraddcl 14644 mplsubgfilemcl 14663 baspartn 14724 epttop 14764 dvaddxxbr 15375 dvmulxxbr 15376 dvaddxx 15377 dvmulxx 15378 dviaddf 15379 dvimulf 15380 plyaddlem1 15421 plyaddlem 15423 |
| Copyright terms: Public domain | W3C validator |