ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inidm GIF version

Theorem inidm 3232
Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
inidm (𝐴𝐴) = 𝐴

Proof of Theorem inidm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 anidm 391 . 2 ((𝑥𝐴𝑥𝐴) ↔ 𝑥𝐴)
21ineqri 3216 1 (𝐴𝐴) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1299  wcel 1448  cin 3020
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-in 3027
This theorem is referenced by:  inindi  3240  inindir  3241  uneqin  3274  ssdifeq0  3392  intsng  3752  xpindi  4612  xpindir  4613  resindm  4797  ofres  5927  offval2  5928  ofrfval2  5929  suppssof1  5930  ofco  5931  offveqb  5932  caofref  5934  caofrss  5937  caoftrn  5938  undifdc  6741  baspartn  11999  epttop  12041
  Copyright terms: Public domain W3C validator