Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inidm | GIF version |
Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
inidm | ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 394 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
2 | 1 | ineqri 3315 | 1 ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 ∩ cin 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 |
This theorem is referenced by: inindi 3339 inindir 3340 uneqin 3373 ssdifeq0 3491 intsng 3858 xpindi 4739 xpindir 4740 resindm 4926 ofres 6064 offval2 6065 ofrfval2 6066 suppssof1 6067 ofco 6068 offveqb 6069 caofref 6071 caofrss 6074 caoftrn 6075 undifdc 6889 baspartn 12688 epttop 12730 dvaddxxbr 13305 dvmulxxbr 13306 dvaddxx 13307 dvmulxx 13308 dviaddf 13309 dvimulf 13310 |
Copyright terms: Public domain | W3C validator |