| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inidm | GIF version | ||
| Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| inidm | ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidm 396 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
| 2 | 1 | ineqri 3357 | 1 ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 ∩ cin 3156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 |
| This theorem is referenced by: inindi 3381 inindir 3382 uneqin 3415 ssdifeq0 3534 intsng 3909 xpindi 4802 xpindir 4803 resindm 4989 ofres 6154 offval2 6155 ofrfval2 6156 suppssof1 6157 ofco 6158 offveqb 6159 ofc1g 6161 ofc2g 6162 caofref 6164 caofrss 6171 caoftrn 6172 undifdc 6994 ofnegsub 9006 ressbasid 12773 strressid 12774 ressinbasd 12777 grpressid 13263 gsumfzmptfidmadd 13545 lcomf 13959 crng2idl 14163 psrbaglesuppg 14302 psraddcl 14308 baspartn 14370 epttop 14410 dvaddxxbr 15021 dvmulxxbr 15022 dvaddxx 15023 dvmulxx 15024 dviaddf 15025 dvimulf 15026 plyaddlem1 15067 plyaddlem 15069 |
| Copyright terms: Public domain | W3C validator |