ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrrebnd GIF version

Theorem xrrebnd 9954
Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
xrrebnd (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))

Proof of Theorem xrrebnd
StepHypRef Expression
1 elxr 9911 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 id 19 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
3 mnflt 9918 . . . . 5 (𝐴 ∈ ℝ → -∞ < 𝐴)
4 ltpnf 9915 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < +∞)
53, 4jca 306 . . . 4 (𝐴 ∈ ℝ → (-∞ < 𝐴𝐴 < +∞))
62, 52thd 175 . . 3 (𝐴 ∈ ℝ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
7 renepnf 8133 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
87necon2bi 2432 . . . 4 (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ)
9 pnfxr 8138 . . . . . . 7 +∞ ∈ ℝ*
10 xrltnr 9914 . . . . . . 7 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
119, 10ax-mp 5 . . . . . 6 ¬ +∞ < +∞
12 breq1 4051 . . . . . 6 (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞))
1311, 12mtbiri 677 . . . . 5 (𝐴 = +∞ → ¬ 𝐴 < +∞)
1413intnand 933 . . . 4 (𝐴 = +∞ → ¬ (-∞ < 𝐴𝐴 < +∞))
158, 142falsed 704 . . 3 (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
16 renemnf 8134 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
1716necon2bi 2432 . . . 4 (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ)
18 mnfxr 8142 . . . . . . 7 -∞ ∈ ℝ*
19 xrltnr 9914 . . . . . . 7 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
2018, 19ax-mp 5 . . . . . 6 ¬ -∞ < -∞
21 breq2 4052 . . . . . 6 (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞))
2220, 21mtbiri 677 . . . . 5 (𝐴 = -∞ → ¬ -∞ < 𝐴)
2322intnanrd 934 . . . 4 (𝐴 = -∞ → ¬ (-∞ < 𝐴𝐴 < +∞))
2417, 232falsed 704 . . 3 (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
256, 15, 243jaoi 1316 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
261, 25sylbi 121 1 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3o 980   = wceq 1373  wcel 2177   class class class wbr 4048  cr 7937  +∞cpnf 8117  -∞cmnf 8118  *cxr 8119   < clt 8120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-pre-ltirr 8050
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-xp 4686  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125
This theorem is referenced by:  xrre  9955  xrre2  9956  xrre3  9957  elioc2  10071  elico2  10072  elicc2  10073  xblpnfps  14920  xblpnf  14921
  Copyright terms: Public domain W3C validator