ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrrebnd GIF version

Theorem xrrebnd 9836
Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
xrrebnd (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))

Proof of Theorem xrrebnd
StepHypRef Expression
1 elxr 9793 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 id 19 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
3 mnflt 9800 . . . . 5 (𝐴 ∈ ℝ → -∞ < 𝐴)
4 ltpnf 9797 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < +∞)
53, 4jca 306 . . . 4 (𝐴 ∈ ℝ → (-∞ < 𝐴𝐴 < +∞))
62, 52thd 175 . . 3 (𝐴 ∈ ℝ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
7 renepnf 8022 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
87necon2bi 2414 . . . 4 (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ)
9 pnfxr 8027 . . . . . . 7 +∞ ∈ ℝ*
10 xrltnr 9796 . . . . . . 7 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
119, 10ax-mp 5 . . . . . 6 ¬ +∞ < +∞
12 breq1 4020 . . . . . 6 (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞))
1311, 12mtbiri 676 . . . . 5 (𝐴 = +∞ → ¬ 𝐴 < +∞)
1413intnand 932 . . . 4 (𝐴 = +∞ → ¬ (-∞ < 𝐴𝐴 < +∞))
158, 142falsed 703 . . 3 (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
16 renemnf 8023 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
1716necon2bi 2414 . . . 4 (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ)
18 mnfxr 8031 . . . . . . 7 -∞ ∈ ℝ*
19 xrltnr 9796 . . . . . . 7 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
2018, 19ax-mp 5 . . . . . 6 ¬ -∞ < -∞
21 breq2 4021 . . . . . 6 (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞))
2220, 21mtbiri 676 . . . . 5 (𝐴 = -∞ → ¬ -∞ < 𝐴)
2322intnanrd 933 . . . 4 (𝐴 = -∞ → ¬ (-∞ < 𝐴𝐴 < +∞))
2417, 232falsed 703 . . 3 (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
256, 15, 243jaoi 1313 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
261, 25sylbi 121 1 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3o 978   = wceq 1363  wcel 2159   class class class wbr 4017  cr 7827  +∞cpnf 8006  -∞cmnf 8007  *cxr 8008   < clt 8009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-cnex 7919  ax-resscn 7920  ax-pre-ltirr 7940
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-nel 2455  df-ral 2472  df-rex 2473  df-rab 2476  df-v 2753  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-br 4018  df-opab 4079  df-xp 4646  df-pnf 8011  df-mnf 8012  df-xr 8013  df-ltxr 8014
This theorem is referenced by:  xrre  9837  xrre2  9838  xrre3  9839  elioc2  9953  elico2  9954  elicc2  9955  xblpnfps  14281  xblpnf  14282
  Copyright terms: Public domain W3C validator