Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrrebnd | GIF version |
Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.) |
Ref | Expression |
---|---|
xrrebnd | ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9712 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | id 19 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
3 | mnflt 9719 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
4 | ltpnf 9716 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
5 | 3, 4 | jca 304 | . . . 4 ⊢ (𝐴 ∈ ℝ → (-∞ < 𝐴 ∧ 𝐴 < +∞)) |
6 | 2, 5 | 2thd 174 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
7 | renepnf 7946 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
8 | 7 | necon2bi 2391 | . . . 4 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
9 | pnfxr 7951 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
10 | xrltnr 9715 | . . . . . . 7 ⊢ (+∞ ∈ ℝ* → ¬ +∞ < +∞) | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ ¬ +∞ < +∞ |
12 | breq1 3985 | . . . . . 6 ⊢ (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞)) | |
13 | 11, 12 | mtbiri 665 | . . . . 5 ⊢ (𝐴 = +∞ → ¬ 𝐴 < +∞) |
14 | 13 | intnand 921 | . . . 4 ⊢ (𝐴 = +∞ → ¬ (-∞ < 𝐴 ∧ 𝐴 < +∞)) |
15 | 8, 14 | 2falsed 692 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
16 | renemnf 7947 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
17 | 16 | necon2bi 2391 | . . . 4 ⊢ (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ) |
18 | mnfxr 7955 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
19 | xrltnr 9715 | . . . . . . 7 ⊢ (-∞ ∈ ℝ* → ¬ -∞ < -∞) | |
20 | 18, 19 | ax-mp 5 | . . . . . 6 ⊢ ¬ -∞ < -∞ |
21 | breq2 3986 | . . . . . 6 ⊢ (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞)) | |
22 | 20, 21 | mtbiri 665 | . . . . 5 ⊢ (𝐴 = -∞ → ¬ -∞ < 𝐴) |
23 | 22 | intnanrd 922 | . . . 4 ⊢ (𝐴 = -∞ → ¬ (-∞ < 𝐴 ∧ 𝐴 < +∞)) |
24 | 17, 23 | 2falsed 692 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
25 | 6, 15, 24 | 3jaoi 1293 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
26 | 1, 25 | sylbi 120 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ w3o 967 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 ℝcr 7752 +∞cpnf 7930 -∞cmnf 7931 ℝ*cxr 7932 < clt 7933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 |
This theorem is referenced by: xrre 9756 xrre2 9757 xrre3 9758 elioc2 9872 elico2 9873 elicc2 9874 xblpnfps 13038 xblpnf 13039 |
Copyright terms: Public domain | W3C validator |