ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrrebnd GIF version

Theorem xrrebnd 9776
Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
xrrebnd (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))

Proof of Theorem xrrebnd
StepHypRef Expression
1 elxr 9733 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 id 19 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
3 mnflt 9740 . . . . 5 (𝐴 ∈ ℝ → -∞ < 𝐴)
4 ltpnf 9737 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < +∞)
53, 4jca 304 . . . 4 (𝐴 ∈ ℝ → (-∞ < 𝐴𝐴 < +∞))
62, 52thd 174 . . 3 (𝐴 ∈ ℝ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
7 renepnf 7967 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
87necon2bi 2395 . . . 4 (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ)
9 pnfxr 7972 . . . . . . 7 +∞ ∈ ℝ*
10 xrltnr 9736 . . . . . . 7 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
119, 10ax-mp 5 . . . . . 6 ¬ +∞ < +∞
12 breq1 3992 . . . . . 6 (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞))
1311, 12mtbiri 670 . . . . 5 (𝐴 = +∞ → ¬ 𝐴 < +∞)
1413intnand 926 . . . 4 (𝐴 = +∞ → ¬ (-∞ < 𝐴𝐴 < +∞))
158, 142falsed 697 . . 3 (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
16 renemnf 7968 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
1716necon2bi 2395 . . . 4 (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ)
18 mnfxr 7976 . . . . . . 7 -∞ ∈ ℝ*
19 xrltnr 9736 . . . . . . 7 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
2018, 19ax-mp 5 . . . . . 6 ¬ -∞ < -∞
21 breq2 3993 . . . . . 6 (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞))
2220, 21mtbiri 670 . . . . 5 (𝐴 = -∞ → ¬ -∞ < 𝐴)
2322intnanrd 927 . . . 4 (𝐴 = -∞ → ¬ (-∞ < 𝐴𝐴 < +∞))
2417, 232falsed 697 . . 3 (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
256, 15, 243jaoi 1298 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
261, 25sylbi 120 1 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3o 972   = wceq 1348  wcel 2141   class class class wbr 3989  cr 7773  +∞cpnf 7951  -∞cmnf 7952  *cxr 7953   < clt 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltirr 7886
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959
This theorem is referenced by:  xrre  9777  xrre2  9778  xrre3  9779  elioc2  9893  elico2  9894  elicc2  9895  xblpnfps  13192  xblpnf  13193
  Copyright terms: Public domain W3C validator