| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrrebnd | GIF version | ||
| Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| xrrebnd | ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9960 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 2 | id 19 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
| 3 | mnflt 9967 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 4 | ltpnf 9964 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
| 5 | 3, 4 | jca 306 | . . . 4 ⊢ (𝐴 ∈ ℝ → (-∞ < 𝐴 ∧ 𝐴 < +∞)) |
| 6 | 2, 5 | 2thd 175 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
| 7 | renepnf 8182 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
| 8 | 7 | necon2bi 2455 | . . . 4 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
| 9 | pnfxr 8187 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
| 10 | xrltnr 9963 | . . . . . . 7 ⊢ (+∞ ∈ ℝ* → ¬ +∞ < +∞) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ ¬ +∞ < +∞ |
| 12 | breq1 4085 | . . . . . 6 ⊢ (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞)) | |
| 13 | 11, 12 | mtbiri 679 | . . . . 5 ⊢ (𝐴 = +∞ → ¬ 𝐴 < +∞) |
| 14 | 13 | intnand 936 | . . . 4 ⊢ (𝐴 = +∞ → ¬ (-∞ < 𝐴 ∧ 𝐴 < +∞)) |
| 15 | 8, 14 | 2falsed 707 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
| 16 | renemnf 8183 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
| 17 | 16 | necon2bi 2455 | . . . 4 ⊢ (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ) |
| 18 | mnfxr 8191 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
| 19 | xrltnr 9963 | . . . . . . 7 ⊢ (-∞ ∈ ℝ* → ¬ -∞ < -∞) | |
| 20 | 18, 19 | ax-mp 5 | . . . . . 6 ⊢ ¬ -∞ < -∞ |
| 21 | breq2 4086 | . . . . . 6 ⊢ (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞)) | |
| 22 | 20, 21 | mtbiri 679 | . . . . 5 ⊢ (𝐴 = -∞ → ¬ -∞ < 𝐴) |
| 23 | 22 | intnanrd 937 | . . . 4 ⊢ (𝐴 = -∞ → ¬ (-∞ < 𝐴 ∧ 𝐴 < +∞)) |
| 24 | 17, 23 | 2falsed 707 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
| 25 | 6, 15, 24 | 3jaoi 1337 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
| 26 | 1, 25 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 1001 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 ℝcr 7986 +∞cpnf 8166 -∞cmnf 8167 ℝ*cxr 8168 < clt 8169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-pre-ltirr 8099 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4722 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 |
| This theorem is referenced by: xrre 10004 xrre2 10005 xrre3 10006 elioc2 10120 elico2 10121 elicc2 10122 xblpnfps 15057 xblpnf 15058 |
| Copyright terms: Public domain | W3C validator |