![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xrrebnd | GIF version |
Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.) |
Ref | Expression |
---|---|
xrrebnd | ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9793 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | id 19 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
3 | mnflt 9800 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
4 | ltpnf 9797 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
5 | 3, 4 | jca 306 | . . . 4 ⊢ (𝐴 ∈ ℝ → (-∞ < 𝐴 ∧ 𝐴 < +∞)) |
6 | 2, 5 | 2thd 175 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
7 | renepnf 8022 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
8 | 7 | necon2bi 2414 | . . . 4 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
9 | pnfxr 8027 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
10 | xrltnr 9796 | . . . . . . 7 ⊢ (+∞ ∈ ℝ* → ¬ +∞ < +∞) | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ ¬ +∞ < +∞ |
12 | breq1 4020 | . . . . . 6 ⊢ (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞)) | |
13 | 11, 12 | mtbiri 676 | . . . . 5 ⊢ (𝐴 = +∞ → ¬ 𝐴 < +∞) |
14 | 13 | intnand 932 | . . . 4 ⊢ (𝐴 = +∞ → ¬ (-∞ < 𝐴 ∧ 𝐴 < +∞)) |
15 | 8, 14 | 2falsed 703 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
16 | renemnf 8023 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
17 | 16 | necon2bi 2414 | . . . 4 ⊢ (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ) |
18 | mnfxr 8031 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
19 | xrltnr 9796 | . . . . . . 7 ⊢ (-∞ ∈ ℝ* → ¬ -∞ < -∞) | |
20 | 18, 19 | ax-mp 5 | . . . . . 6 ⊢ ¬ -∞ < -∞ |
21 | breq2 4021 | . . . . . 6 ⊢ (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞)) | |
22 | 20, 21 | mtbiri 676 | . . . . 5 ⊢ (𝐴 = -∞ → ¬ -∞ < 𝐴) |
23 | 22 | intnanrd 933 | . . . 4 ⊢ (𝐴 = -∞ → ¬ (-∞ < 𝐴 ∧ 𝐴 < +∞)) |
24 | 17, 23 | 2falsed 703 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
25 | 6, 15, 24 | 3jaoi 1313 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
26 | 1, 25 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 978 = wceq 1363 ∈ wcel 2159 class class class wbr 4017 ℝcr 7827 +∞cpnf 8006 -∞cmnf 8007 ℝ*cxr 8008 < clt 8009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-setind 4550 ax-cnex 7919 ax-resscn 7920 ax-pre-ltirr 7940 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-nel 2455 df-ral 2472 df-rex 2473 df-rab 2476 df-v 2753 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-br 4018 df-opab 4079 df-xp 4646 df-pnf 8011 df-mnf 8012 df-xr 8013 df-ltxr 8014 |
This theorem is referenced by: xrre 9837 xrre2 9838 xrre3 9839 elioc2 9953 elico2 9954 elicc2 9955 xblpnfps 14281 xblpnf 14282 |
Copyright terms: Public domain | W3C validator |