Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrrebnd GIF version

Theorem xrrebnd 9542
 Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
xrrebnd (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))

Proof of Theorem xrrebnd
StepHypRef Expression
1 elxr 9503 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 id 19 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
3 mnflt 9509 . . . . 5 (𝐴 ∈ ℝ → -∞ < 𝐴)
4 ltpnf 9507 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < +∞)
53, 4jca 302 . . . 4 (𝐴 ∈ ℝ → (-∞ < 𝐴𝐴 < +∞))
62, 52thd 174 . . 3 (𝐴 ∈ ℝ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
7 renepnf 7777 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
87necon2bi 2338 . . . 4 (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ)
9 pnfxr 7782 . . . . . . 7 +∞ ∈ ℝ*
10 xrltnr 9506 . . . . . . 7 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
119, 10ax-mp 5 . . . . . 6 ¬ +∞ < +∞
12 breq1 3900 . . . . . 6 (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞))
1311, 12mtbiri 647 . . . . 5 (𝐴 = +∞ → ¬ 𝐴 < +∞)
1413intnand 899 . . . 4 (𝐴 = +∞ → ¬ (-∞ < 𝐴𝐴 < +∞))
158, 142falsed 674 . . 3 (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
16 renemnf 7778 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
1716necon2bi 2338 . . . 4 (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ)
18 mnfxr 7786 . . . . . . 7 -∞ ∈ ℝ*
19 xrltnr 9506 . . . . . . 7 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
2018, 19ax-mp 5 . . . . . 6 ¬ -∞ < -∞
21 breq2 3901 . . . . . 6 (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞))
2220, 21mtbiri 647 . . . . 5 (𝐴 = -∞ → ¬ -∞ < 𝐴)
2322intnanrd 900 . . . 4 (𝐴 = -∞ → ¬ (-∞ < 𝐴𝐴 < +∞))
2417, 232falsed 674 . . 3 (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
256, 15, 243jaoi 1264 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
261, 25sylbi 120 1 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∨ w3o 944   = wceq 1314   ∈ wcel 1463   class class class wbr 3897  ℝcr 7583  +∞cpnf 7761  -∞cmnf 7762  ℝ*cxr 7763   < clt 7764 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-pre-ltirr 7696 This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-xp 4513  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769 This theorem is referenced by:  xrre  9543  xrre2  9544  xrre3  9545  elioc2  9659  elico2  9660  elicc2  9661  xblpnfps  12462  xblpnf  12463
 Copyright terms: Public domain W3C validator