| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrrebnd | GIF version | ||
| Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| xrrebnd | ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9868 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 2 | id 19 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
| 3 | mnflt 9875 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 4 | ltpnf 9872 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
| 5 | 3, 4 | jca 306 | . . . 4 ⊢ (𝐴 ∈ ℝ → (-∞ < 𝐴 ∧ 𝐴 < +∞)) |
| 6 | 2, 5 | 2thd 175 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
| 7 | renepnf 8091 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
| 8 | 7 | necon2bi 2422 | . . . 4 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
| 9 | pnfxr 8096 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
| 10 | xrltnr 9871 | . . . . . . 7 ⊢ (+∞ ∈ ℝ* → ¬ +∞ < +∞) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ ¬ +∞ < +∞ |
| 12 | breq1 4037 | . . . . . 6 ⊢ (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞)) | |
| 13 | 11, 12 | mtbiri 676 | . . . . 5 ⊢ (𝐴 = +∞ → ¬ 𝐴 < +∞) |
| 14 | 13 | intnand 932 | . . . 4 ⊢ (𝐴 = +∞ → ¬ (-∞ < 𝐴 ∧ 𝐴 < +∞)) |
| 15 | 8, 14 | 2falsed 703 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
| 16 | renemnf 8092 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
| 17 | 16 | necon2bi 2422 | . . . 4 ⊢ (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ) |
| 18 | mnfxr 8100 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
| 19 | xrltnr 9871 | . . . . . . 7 ⊢ (-∞ ∈ ℝ* → ¬ -∞ < -∞) | |
| 20 | 18, 19 | ax-mp 5 | . . . . . 6 ⊢ ¬ -∞ < -∞ |
| 21 | breq2 4038 | . . . . . 6 ⊢ (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞)) | |
| 22 | 20, 21 | mtbiri 676 | . . . . 5 ⊢ (𝐴 = -∞ → ¬ -∞ < 𝐴) |
| 23 | 22 | intnanrd 933 | . . . 4 ⊢ (𝐴 = -∞ → ¬ (-∞ < 𝐴 ∧ 𝐴 < +∞)) |
| 24 | 17, 23 | 2falsed 703 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
| 25 | 6, 15, 24 | 3jaoi 1314 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
| 26 | 1, 25 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ℝcr 7895 +∞cpnf 8075 -∞cmnf 8076 ℝ*cxr 8077 < clt 8078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-pre-ltirr 8008 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 |
| This theorem is referenced by: xrre 9912 xrre2 9913 xrre3 9914 elioc2 10028 elico2 10029 elicc2 10030 xblpnfps 14718 xblpnf 14719 |
| Copyright terms: Public domain | W3C validator |