Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lgsval4a | GIF version |
Description: Same as lgsval4 13521 for positive 𝑁. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
lgsval4.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) |
Ref | Expression |
---|---|
lgsval4a | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , 𝐹)‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℤ) | |
2 | nnz 9206 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
3 | 2 | adantl 275 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ) |
4 | nnne0 8881 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
5 | 4 | adantl 275 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0) |
6 | lgsval4.1 | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) | |
7 | 6 | lgsval4 13521 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) |
8 | 1, 3, 5, 7 | syl3anc 1228 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) |
9 | nngt0 8878 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
10 | 9 | adantl 275 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁) |
11 | 0re 7895 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
12 | nnre 8860 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
13 | 12 | adantl 275 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ) |
14 | ltnsym 7980 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → ¬ 𝑁 < 0)) | |
15 | 11, 13, 14 | sylancr 411 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 < 𝑁 → ¬ 𝑁 < 0)) |
16 | 10, 15 | mpd 13 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ¬ 𝑁 < 0) |
17 | 16 | intnanrd 922 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ¬ (𝑁 < 0 ∧ 𝐴 < 0)) |
18 | 17 | iffalsed 3529 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1) |
19 | nnnn0 9117 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
20 | 19 | adantl 275 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
21 | 20 | nn0ge0d 9166 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝑁) |
22 | 13, 21 | absidd 11105 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (abs‘𝑁) = 𝑁) |
23 | 22 | fveq2d 5489 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘(abs‘𝑁)) = (seq1( · , 𝐹)‘𝑁)) |
24 | 18, 23 | oveq12d 5859 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) = (1 · (seq1( · , 𝐹)‘𝑁))) |
25 | nnuz 9497 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
26 | 1zzd 9214 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℤ) | |
27 | 6 | lgsfcl3 13522 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ) |
28 | 1, 3, 5, 27 | syl3anc 1228 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹:ℕ⟶ℤ) |
29 | 28 | ffvelrnda 5619 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → (𝐹‘𝑥) ∈ ℤ) |
30 | zmulcl 9240 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) | |
31 | 30 | adantl 275 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ) |
32 | 25, 26, 29, 31 | seqf 10392 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → seq1( · , 𝐹):ℕ⟶ℤ) |
33 | simpr 109 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
34 | 32, 33 | ffvelrnd 5620 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℤ) |
35 | 34 | zcnd 9310 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℂ) |
36 | 35 | mulid2d 7913 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (1 · (seq1( · , 𝐹)‘𝑁)) = (seq1( · , 𝐹)‘𝑁)) |
37 | 8, 24, 36 | 3eqtrd 2202 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , 𝐹)‘𝑁)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ≠ wne 2335 ifcif 3519 class class class wbr 3981 ↦ cmpt 4042 ⟶wf 5183 ‘cfv 5187 (class class class)co 5841 ℝcr 7748 0cc0 7749 1c1 7750 · cmul 7754 < clt 7929 -cneg 8066 ℕcn 8853 ℕ0cn0 9110 ℤcz 9187 seqcseq 10376 ↑cexp 10450 abscabs 10935 ℙcprime 12035 pCnt cpc 12212 /L clgs 13498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 ax-arch 7868 ax-caucvg 7869 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-xor 1366 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-if 3520 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-po 4273 df-iso 4274 df-iord 4343 df-on 4345 df-ilim 4346 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-isom 5196 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-recs 6269 df-irdg 6334 df-frec 6355 df-1o 6380 df-2o 6381 df-oadd 6384 df-er 6497 df-en 6703 df-dom 6704 df-fin 6705 df-sup 6945 df-inf 6946 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-2 8912 df-3 8913 df-4 8914 df-5 8915 df-6 8916 df-7 8917 df-8 8918 df-n0 9111 df-z 9188 df-uz 9463 df-q 9554 df-rp 9586 df-fz 9941 df-fzo 10074 df-fl 10201 df-mod 10254 df-seqfrec 10377 df-exp 10451 df-ihash 10685 df-cj 10780 df-re 10781 df-im 10782 df-rsqrt 10936 df-abs 10937 df-clim 11216 df-proddc 11488 df-dvds 11724 df-gcd 11872 df-prm 12036 df-phi 12139 df-pc 12213 df-lgs 13499 |
This theorem is referenced by: lgsmod 13527 |
Copyright terms: Public domain | W3C validator |